Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-28T00:57:42.007Z Has data issue: false hasContentIssue false

Relation between internal boundaries and critical current in textured YBa2Cu3O7−δ: Transmission electron microscope observations

Published online by Cambridge University Press:  31 January 2011

A. Khalfi
Affiliation:
Laboratoire de Matériaux Céramiques et Traitement de Surfaces, E.S.A. C.N.R.S. 6015, 123 avenue Albert Thomas, 87060 Limoges Cedex, France
G. Trolliard
Affiliation:
Laboratoire de Matériaux Céramiques et Traitement de Surfaces, E.S.A. C.N.R.S. 6015, 123 avenue Albert Thomas, 87060 Limoges Cedex, France
B. Soulestin
Affiliation:
Laboratoire de Matériaux Céramiques et Traitement de Surfaces, E.S.A. C.N.R.S. 6015, 123 avenue Albert Thomas, 87060 Limoges Cedex, France
D. S. Smith
Affiliation:
Laboratoire de Matériaux Céramiques et Traitement de Surfaces, E.S.A. C.N.R.S. 6015, 123 avenue Albert Thomas, 87060 Limoges Cedex, France
J. P. Bonnet
Affiliation:
Laboratoire de Matériaux Céramiques et Traitement de Surfaces, E.S.A. C.N.R.S. 6015, 123 avenue Albert Thomas, 87060 Limoges Cedex, France
D. Bourgault
Affiliation:
Elaboration par Procédés Magnétiques, Matériaux et Force Magnétique (MATFORMAG), U.P.R. C.N.R.S. 9033, 25 avenue des Matyrs B.P. 166, 38042 Grenoble Cedex 9, France
R. Tournier
Affiliation:
Elaboration par Procédés Magnétiques, Matériaux et Force Magnétique (MATFORMAG), U.P.R. C.N.R.S. 9033, 25 avenue des Matyrs B.P. 166, 38042 Grenoble Cedex 9, France
Get access

Abstract

The local critical current (Ic) at 77 K measured at the mm scale in a 60 mm long sample of YBa2Cu3O7−δ prepared by a melting zone process is correlated to the microstructure. Lower values of Ic (<20 A) were obtained in a part of the sample which optical microscope examination showed to be generally polycrystalline. In contrast, the rest of the sample, consisting mostly of large textured domains, gave values for Ic of 120 A and above. Transmission electron microscope observations revealed that the textured domains contain internal boundaries. Depending on the scale of observation, the misorientation angles across the boundaries could vary from a few tenths of a degree up to a few degrees. This seems characteristic for boundaries in textured material which allow strong coupling of the superconducting current across themselves.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Siegal, M. P., Han, S. Y., Phillips, J. M., Tiefal, T. H., and Marshall, J. H., J. Mater. Res. 7, 2658 (1989).CrossRefGoogle Scholar
2.Tkaczyk, J. E. and Lay, K. W., J. Mater. Res. 5, 13681379 (1990).CrossRefGoogle Scholar
3.Ekin, J. W., Braginski, A. I., Panson, A. J., Janocko, M. A., Capone, D. W., Zaluzec, N., Flandermeyer, B., de Lima, O. F., Hong, M., Kwo, J., and Liou, S. H., J. Appl. Phys. 64, 4821 (1987).CrossRefGoogle Scholar
4.Dersch, H. and Blatter, G., Phys. Rev. B 38, 1139111404 (1988).Google Scholar
5.Alford, N. McN., Clegg, W. J., Harmer, M. A., Birchall, J. D., Kendall, K., and Jones, D. H., Nature (London) 332, 5859 (1988).Google Scholar
6.Smith, D. S., Suasmoro, S., and Gault, C., J. Eur. Ceram. Soc. 5, 8185 (1989).CrossRefGoogle Scholar
7.Lee, D. F., Selvamanickam, V., and Salama, K., Physica C 202, 83 (1992).CrossRefGoogle Scholar
8.Jin, S., Tiefal, T. H., Sherwood, R. C., Davis, M. E., Van Dover, R. B., Kammlott, G. W., Fastnacht, R. A., and Keith, H. D., Appl. Phys. Lett. 52, 2074 (1988).Google Scholar
9.Chaudhari, P., Mannhart, J., Dimos, D., Tsuei, C. C., Chi, J., Oprysko, M. M., and Scheuermann, M., Phys. Rev. Lett. 60, 1653 (1988).CrossRefGoogle Scholar
10.Dimos, D., Chaudhari, P., Mannhart, J., and LeGoues, F. K., Phys. Rev. Lett. 61, 219222 (1988).CrossRefGoogle Scholar
11.Dimos, D., Chaudhari, P., and Mannhart, J., Phys. Rev. B 41, 40384049 (1990).CrossRefGoogle Scholar
12.Babcock, S. E., Cai, X. Y., Kaiser, D. L., and Larbalestier, D. C., Nature (London) 347, 167169 (1990).CrossRefGoogle Scholar
13.Schindler, G., Sarma, C., Haase, D. G., Koch, C. C., and Kingon, A. I., Crogenics 34, 287292 (1994).Google Scholar
14.Parikh, A. S., Meyer, B., and Salama, K., Supercond. Sci. Technol. 7, 455461 (1994).CrossRefGoogle Scholar
15.Hascicek, Y. S., Testardi, L. R., Leventouri, Th., Liarokapis, E., and Martinez, L., J. Appl. Phys. 68, 41784182 (1990).CrossRefGoogle Scholar
16.Gu, H., Rualt, M. O., and Beriot, E., Micros. Microanal. Microstruc. 4, 51 (1993).CrossRefGoogle Scholar
17.McGinn, P., in High-Temperature Superconducting Materials Science and Engineering: New Concepts and Technology, edited by Shi, D. (Pergamon, Oxford, 1995), Chap. 8.Google Scholar
18.Rocher, A. and Fontaine, C., J. Micros. Spectro. Electron. 4, 19 (1979).Google Scholar
19.Yan, Y., Cardwell, D. A., and Campbell, A. M., J. Mater. Res. 11, 29902999 (1996).CrossRefGoogle Scholar
20.Tsu, I. F., Babcock, S. E., and Kaiser, D. L., J. Mater. Res. 11, 13831397 (1996).Google Scholar
21.Field, M. B., Pashitski, A., Polyanskii, A., Larbalestier, D. C., Parikh, A. S., and Salama, K., IEEE Trans. Appl. Supercond. (1995), pp. 16311634.CrossRefGoogle Scholar