Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-02T16:24:56.785Z Has data issue: false hasContentIssue false

The relationship between glass structure and poling-induced optical second harmonic intensity for ZnO–TeO2 glasses

Published online by Cambridge University Press:  31 January 2011

Y. Shimizugawa
Affiliation:
Hirao active glass project, ERATO, JRDC, 15 Morimoto-cho, Shimogamo, Sakyo-ku Kyoto 606, Japan
K. Hirao
Affiliation:
Hirao active glass project, ERATO, JRDC, 15 Morimoto-cho, Shimogamo, Sakyo-ku Kyoto 606, Japan, and Division of Material Chemistry, Faculty of Engineering, Kyoto University, Sakyo-ku Kyoto 606–01, Japan
Get access

Abstract

Local ordering around Te and Zn atoms of ZnO–TeO2 glass systems is investigated by Te K and Zn K EXAFS using synchrotron radiation. Tellurium K EXAFS results suggest the coordination states of tellurium atoms are changed from TeO4 trigonal bipyramids to TeO311 polyhedra or TeO3 trigonal pyramids with increasing of ZnO. Zinc K EXAFS results indicate that the Zn atom has the second oxygen shell which locates at the distance of 0.222–0.228 nm. The second harmonic intensity of the poled glass samples was also measured. The compositional dependence of the second harmonic intensity is explained in terms of the structural change of ZnO–TeO2 glass with the addition of ZnO.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Stanworth, J. E., Nature (London) 169, 582 (1952).CrossRefGoogle Scholar
2. Sarjeant, P. T. and Roy, R., J. Am. Ceram. Soc. 50, 500 (1967).CrossRefGoogle Scholar
3. Mochida, N., Takahashi, K., Nakato, K., and Shibusawa, S., J. Ceram. Soc. Jpn. 86, 317 (1978).Google Scholar
4. Burger, H., Vogel, W., and Kozhukharov, V., Infrared Phys. 25, 395 (1985).CrossRefGoogle Scholar
5. Nasu, H., Matsushita, O., Kamiya, K., Kobayashi, H., and Kubodera, K., J. Non-Cryst. Solids 124, 275 (1990).CrossRefGoogle Scholar
6. Kim, S-H., Yoko, T., and Sakka, S., J. Am. Ceram. Soc. 76, 2486 (1993).CrossRefGoogle Scholar
7. Tanaka, K., Yoko, T., Yamada, H., and Kamiya, K., J. Non-Cryst. Solids 103, 250 (1988).CrossRefGoogle Scholar
8. Rossignol, S., Reau, J. M., Tanguy, B., Videau, J. J., and Portier, J., J. Non-Cryst. Solids 103, 250 (1988).Google Scholar
9. Binczycka, H., Gzowski, O., Murawski, L., and Sawaicki, J., Phys. Status Solidi (a) 70, 51 (1982).CrossRefGoogle Scholar
10. Dhawan, V. K., Mansingh, A., and Sayer, M., J. Non-Cryst. Solids 51, 87 (1982).CrossRefGoogle Scholar
11. Tanaka, K., Kashima, K., Hirao, K., Soga, N., Mito, A., and Nasu, H., Jpn. J. Appl. Phys. 32, L843 (1993).CrossRefGoogle Scholar
12. Österberg, U. and Margulis, W., Opt. Lett. 11, 516 (1986).CrossRefGoogle Scholar
13. Satow, Y., Asakura, K., and Kuroda, H., J. Phys. C20, 5026 (1987).Google Scholar
14. Satow, Y. and Iitaka, Y., Rev. Sci. Instrum. 60, 2390 (1989).CrossRefGoogle Scholar
15. Lindqvist, O., Acta Chem. Scand. 22, 977 (1968).CrossRefGoogle Scholar
16. Hanke, K., Naturwissenschaften 53, 273 (1966).CrossRefGoogle Scholar
17. Hanke, K., Naturwissenschaften 54, 199 (1967).CrossRefGoogle Scholar
18. Shimizugawa, Y., Maeseto, T., Suehara, S., Inoue, S., and Nukui, A., J. Mater. Res. 10, 405 (1995).CrossRefGoogle Scholar