Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-14T19:15:38.275Z Has data issue: false hasContentIssue false

Relationship between growth rate and undercooling in Pt-added Y1Ba2Cu3O7−x

Published online by Cambridge University Press:  31 January 2011

A. Endo
Affiliation:
Superconductivity Research Laboratory, ISTEC, 1–10–13, Shinonome, Koto-ku, Tokyo, 135, Japan
H. S. Chauhan
Affiliation:
Superconductivity Research Laboratory, ISTEC, 1–10–13, Shinonome, Koto-ku, Tokyo, 135, Japan
Y. Nakamura
Affiliation:
Superconductivity Research Laboratory, ISTEC, 1–10–13, Shinonome, Koto-ku, Tokyo, 135, Japan
Y. Shiohara
Affiliation:
Superconductivity Research Laboratory, ISTEC, 1–10–13, Shinonome, Koto-ku, Tokyo, 135, Japan
Get access

Abstract

Y1Ba2Cu307−x (Y123) crystals were grown by two different methods, the constant undercooling solidification and the continual cooling method, with top seeding by Sm123 seed crystals in order to investigate a relationship between undercooling (ΔT) and a growth rate (R). The crystals of Y123 with a sharp faceted interface, which consisted of {100} and {001} faces, grew epitaxially from the seed. It was found that the growth rates of {100} face (Ra) and that of {001} face (Rc) showed an increasing trend with increasing ΔT, and Rc was faster than Ra within these experimental conditions, ΔT < 20 K. The relation between R and ΔT follows the parabolic equation, viz. RaΔT1.9 and Rc ∝ ΔT1.3 for {100} and {001} faces, respectively. The simulated crystal size using the R and ΔT relations obtained from the constant undercooling method showed good agreement with experimental data by the continual cooling.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Jin, S., Tiefel, T. H., Sherwood, R. C., van Dover, R. B., Davis, M. E., Kammlott, G. W., and Fastnacht, R. A., Phys. Rev. B 37, 7850 (1988).CrossRefGoogle Scholar
2.Murakami, M., Morita, M., Doi, K., and Miyamoto, K., Jpn. J. Appl. Phys. 28, 1189 (1989).CrossRefGoogle Scholar
3.Fujimoto, H., Murakami, M., Gotoh, S., Koshizuka, N., Oyama, T., Shiohara, Y., and Tanaka, S., Adv. Superconductivity II, 285 (1990).CrossRefGoogle Scholar
4.Ogawa, N., Hirabayashi, I., and Tanaka, S., Physica C 177, 101 (1991).CrossRefGoogle Scholar
5.Izumi, T., Nakamura, Y., and Shiohara, Y., J. Mater. Res. 7, 1621 (1992).CrossRefGoogle Scholar
6.Cima, M. J., Flemings, M. C., Figuredo, A. M., Nakade, M., Ishii, H., Brody, H. D., and Haggerty, J. S., J. Appl. Phys. 72, 179 (1992).CrossRefGoogle Scholar
7.Bateman, C. A., Zhang, L., Chan, H. M., and Harmer, M.P., J. Am. Ceram. Soc. 75, 1281 (1992).CrossRefGoogle Scholar
8.Izumi, T., Nakamura, Y., and Shiohara, Y., J. Cryst. Growth 128, 757 (1993).CrossRefGoogle Scholar
9.Nakamura, Y., Izumi, T., and Shiohara, Y., Adv. Superconductivity V, 585 (1993).Google Scholar
10.Ohtsu, K., Yamada, Y., Izumi, T., Nakamura, Y., and Shiohara, Y., Adv. Superconductivity V, 581 (1993).Google Scholar
11.Izumi, T., Ohtsu, K., Nakamura, Y., and Shiohara, Y., Adv. Superconductivity V, 577 (1993).Google Scholar
12.Sawano, K., Morita, M., Tanaka, M., Sakai, T., Kimura, K., Takebayashi, S., Kimura, M., and Miyamoto, K., Jpn. J. Appl. Phys. 30, L1157 (1991).CrossRefGoogle Scholar
13.Meng, R. L., Gao, L., Autier-Picard, P. G., Ramirez, D., Sun, Y. Y., and Chu, C. W., Physica C 232, 337 (1994).CrossRefGoogle Scholar
14.Endo, A., Chauhan, H. S., Nakamura, Y., and Shiohara, Y., Adv. Superconductivity VII, 689 (1995).Google Scholar
15.Aselage, T. and Keefer, K., J. Mater. Res. 3, 1279 (1988).CrossRefGoogle Scholar
16.Lee, B. J. and Lee, D. N., J. Am. Ceram. Soc. 74, 78 (1991).CrossRefGoogle Scholar
17.Krauns, Ch., Sumida, M., Tagami, M., Yamada, Y., and Shiohara, Y., Z. Phys. B 96, 207 (1994).CrossRefGoogle Scholar
18.Nakamura, Y., Furuya, K., Izumi, T., and Shiohara, Y., J. Mater. Res. 9, 1350 (1994).CrossRefGoogle Scholar
19.Sun, B. N., Hartman, P., Woensdregt, C. F., and Schmid, H., J. Cryst. Growth 100, 605 (1990).CrossRefGoogle Scholar
20.Bennema, P. and Glimer, G. H., Crystal Growth: An Introduction (North Holland Pub. Co., Amsterdam, Holland, 1973).Google Scholar
21.Yamada, Y., Nakamura, M., Shiohara, Y., and Tanaka, S., J. Cryst. Growth 148, 241 (1995).CrossRefGoogle Scholar