Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-05T01:57:15.057Z Has data issue: false hasContentIssue false

The relationship between the MOCVD parameters and the crystallinity, epitaxy, and domain structure of PbTiO3 films

Published online by Cambridge University Press:  03 March 2011

G.R. Bai
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439-4838
H.L.M. Chang
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439-4838
C.M. Foster
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439-4838
Z. Shen
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439-4838
D.J. Lam
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439-4838
Get access

Abstract

Lead- and titanium-based oxide thin films were prepared by the metal-organic chemical vapor deposition technique (MOCVD) and the relationship between the film structures and the processing parameters, such as the ratio of Pb/Ti precursors in the gas phase, substrate materials, substrate surface orientation, and growth temperature, was systematically studied. It was found that whether a single-phase stoichiometric PbTiO3 film could be obtained depended on both the Pb/Ti precursor ratio in the gas phase and the deposition temperature. Under appropriate conditions, stoichiometric PbTiO3, films could be obtained on all the substrates including silicon, MgO, α-Al2O3, SrTiO3, and LaAlO3. The PbTiO3 films grown on silicon substrates were always polycrystalline, whereas epitaxial PbTiO3 films were obtainable on all the other substrates. For epitaxial PbTiO3 films, the epitaxial relationship, crystallinity, and domain structures were found to be a function of both the substrate materials and surface orientation as well as the deposition temperature. X-ray rocking curves (ω scan) of the (100) and (001) planes of PbTiO3 epitaxial film and PbTiO3 single crystal revealed the inherent nature of the domain structures in PbTiO3.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Sheppard, L. M., Ceram. Bull. 71, 8595 (1992).Google Scholar
2Yoon, S. G. and Kim, H. G., Thin Solid Films 165, 291 (1988).CrossRefGoogle Scholar
3Brierley, C. J., Trundle, C., Considine, L., Whatmore, R. W., and Ainger, F. W., Ferroelectrics 90, 181 (1989).CrossRefGoogle Scholar
4Swartz, S. L., Serfert, D. A., Noel, G. T., and Shrout, T. R., Ferroelectrics 93, 37 (1989).CrossRefGoogle Scholar
5Okada, M., Takai, S., Amemiya, M., and Tominaga, K., Jpn. J. Appl. Phys. 28, 1030 (1989).CrossRefGoogle Scholar
6Kingon, A. I., Hsieh, K. Y., King, L. L. H, Rou, S. H., Backmann, K. J., and Davis, R. F., in Ferroelectric Thin Films, edited by Myers, E. R. and Kingon, A. I. (Mater. Res. Soc. Symp. Proc. 200, Pittsburgh, PA, 1990), p. 49.Google Scholar
7de Keijser, M., Dormans, G. J. M., Cillessen, J. F. M., de Leeuw, D. M., and Zandbergen, H. W., Appl. Phys. Lett. 58, 2636 (1991).CrossRefGoogle Scholar
8Katayama, T., Fuzimoto, M., Shimizu, M., and Shiosaki, T., Jpn. J. Appl. Phys. 30, 2189 (1991).CrossRefGoogle Scholar
9Sakashita, Y., Ono, T., Segawa, H., Tominaga, K., and Okada, M., J. Appl. Phys. 69, 8352 (1991).CrossRefGoogle Scholar
10Erbil, A., Braun, W., Kwak, B. S., Boatner, L. A., and Wilkens, B. J., J. Cryst. Growth 124, 684 (1992).CrossRefGoogle Scholar
11Bai, G. R., Chang, H. L. M, Kim, H. K., Foster, C. M., and Lam, D. J., Appl. Phys. Lett. 64, 408 (1992).CrossRefGoogle Scholar
12Gao, Y., Bai, G., Merkle, K. L., Shi, Y., Chang, H. L. M., Shen, Z., and Lam, D. J., J. Mater. Res. 8, 145 (1993).CrossRefGoogle Scholar
13Bai, G. R., Chang, H. L. M, Lam, D. J., and Gao, Y., Appl. Phys. Lett., 62, 1754 (1993).CrossRefGoogle Scholar
14Bai, G. R., Chang, H. L. M, and Lam, D. J. (unpublished).Google Scholar
15Ogawa, T., Senda, A., and Kasanami, T., Jpn. J. Appl. Phys. 30, 2145 (1991).CrossRefGoogle Scholar
16Chang, H. L. M., You, H., Guo, J., and Lam, D. J., Appl. Surf. Sci. 48ü49, 12 (1991).CrossRefGoogle Scholar
17Chang, H. L. M., You, H., Gao, Y., Guo, J., Foster, C. M., Chiarello, R. P., Zhang, T. J., and Lam, D. J., J. Mater. Res. 7, 2495 (1992).CrossRefGoogle Scholar
18Gao, Y., Bai, G., Merkle, K. L., Chang, H. L. M, and Lam, D. J., Thin Solid Films (in press).Google Scholar