Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-14T19:26:38.124Z Has data issue: false hasContentIssue false

Relevant changes in the properties of Co(Ni)Mo/Al2O3 HDS catalysts modified by small amounts of SiO2

Published online by Cambridge University Press:  13 August 2018

Adolfo Romero-Galarza*
Affiliation:
Departamento de Ingeniería Química, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Saltillo, Coahuila 25280, Mexico
Jorge Ramírez
Affiliation:
UNICAT, Departamento de Ingeniería Química, Facultad de Química, UNAM, Cd de México 04510, Mexico
Aída Gutiérrez-Alejandre
Affiliation:
UNICAT, Departamento de Ingeniería Química, Facultad de Química, UNAM, Cd de México 04510, Mexico
Dora Alicia Solís-Casados
Affiliation:
Universidad Autónoma del Estado de México, Centro Conjunto de Investigación en Química Sustentable, UAEM-UNAM, Toluca, Estado de México 50200, México
*
a)Address all correspondence to this author. e-mail: a_romero@uadec.edu.mx
Get access

Abstract

The changes in hydrodesulfurization activity, selectivity, dispersion, sulfidation, and extent of promotion of Co(Ni)Mo catalysts were investigated when the alumina support surface is modified by grafting 4 wt% silica. Adding SiO2 eliminates the most reactive hydroxyl groups on the alumina surface (IR band at 3775 cm−1) decreasing the possibility of generating tetrahedral Mo species difficult to sulfide in favor of octahedral ones capable of contributing to the sulfided active phase. The catalysts were evaluated in the hydrodesulfurization of 4,6-dimethyldibenzothiophene. Incorporating SiO2 to alumina increases the hydrogenation rate constant and therefore the global hydrodesulfurization rate of 4,6-dimethyldibenzothiophene and enhances the promotion of Mo by Co (or Ni). The global sulfidation of Ni is not affected by the addition of silica but the sulfidation of cobalt is significantly improved. The extent of promotion of the NiMo/Al2O3 and NiMo/SiO2/Al2O3 catalysts was greater than the one achieved in their Co-promoted counterparts.

Type
Article
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Song, C.: An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel. Catal. Today 86, 211 (2003).CrossRefGoogle Scholar
Abu, I.I. and Smith, K.J.: HDN and HDS of model compounds and light gas oil derived from Athabasca bitumen using supported metal phosphide catalysts. Appl. Catal., A 328, 58 (2007).CrossRefGoogle Scholar
Stanislaus, A., Marafi, A., and Rana, M.S.: Recent advances in the science and technology of ultra low sulfur diesel (ULSD) production. Catal. Today 153, 1 (2010).CrossRefGoogle Scholar
Villarreal, A., Ramírez, J., Caero, L.C., Villalón, P.C., and Gutiérrez-Alejandre, A.: Importance of the sulfidation step in the preparation of highly active NiMo/SiO2/Al2O3 hydrodesulfurization catalysts. Catal. Today 250, 60 (2015).CrossRefGoogle Scholar
Ren, S., Li, J., Feng, B., Wang, Y., Zhang, W., Wen, G., Zhang, Z., and Shen, B.: A novel catalyst of Ni, W-surface-Ti-rich-ETS-10/Al2O3: Its role and potential of HDS performance for steric hindered sulfur compound 4,6-DMDBT. Catal. Today 263, 136 (2016).CrossRefGoogle Scholar
Daage, M. and Chianelli, R.R.: structure-function relations in molybdenum sulfide catalysts: The Rim-Edge Model. J. Catal. 149, 414 (1994).CrossRefGoogle Scholar
Topsoe, H.: In situ Mossbauer emission spectroscopy studies of unsupported and supported sulfided Co–Mo hydrodesulfurization catalysts: Evidence for and nature of a Co–Mo–S phase. J. Catal. 68, 433 (1981).CrossRefGoogle Scholar
Hinnemann, B., Nørskov, J.K., and Topsøe, H.: A density functional study of the chemical differences between type I and type II MoS2 -based structures in hydrotreating catalysts. J. Phys. Chem. B 109, 2245 (2005).CrossRefGoogle ScholarPubMed
Topsøe, H.: The role of Co–Mo–S type structures in hydrotreating catalysts. Appl. Catal., A 322, 3 (2007).CrossRefGoogle Scholar
Besenbacher, F., Brorson, M., Clausen, B.S., Helveg, S., Hinnemann, B., Kibsgaard, J., Lauritsen, J.V., Moses, P.G., Nørskov, J.K., and Topsøe, H.: Recent STM, DFT, and HAADF-STEM studies of sulfide-based hydrotreating catalysts: Insight into mechanistic, structural and particle size effects. Catal. Today 130, 86 (2008).CrossRefGoogle Scholar
Ramos, M., Berhault, G., Ferrer, D.A., Torres, B., and Chianelli, R.R.: HRTEM and molecular modeling of the MoS2–Co9S8 interface: Understanding the promotion effect in bulk HDS catalysts. Catal. Sci. Technol. 2, 164 (2012).CrossRefGoogle Scholar
Berhault, G., Perez De la Rosa, M., Mehta, A., Yácaman, M.J., and Chianelli, R.R.: The single-layered morphology of supported MoS2-based catalysts—The role of the cobalt promoter and its effects in the hydrodesulfurization of dibenzothiophene. Appl. Catal., A 345, 80 (2008).CrossRefGoogle Scholar
Breysse, M., Afanasiev, P., Geantet, C., and Vrinat, M.: Overview of support effects in hydrotreating catalysts. Catal. Today 86, 5 (2003).CrossRefGoogle Scholar
Xu, J., Huang, T., and Fan, Y.: Highly efficient NiMoSiO2–Al2O3 hydrodesulfurization catalyst prepared from gemini surfactant-dispersed Mo precursor. Appl. Catal., B 203, 839 (2017).CrossRefGoogle Scholar
da Silva Neto, A.V., Leite, E.R., da Silva, V.T., Zotin, J.L., and Urquieta-González, E.A.: NiMoS HDS catalysts—The effect of the Ti and Zr incorporation into the silica support and of the catalyst preparation methodology on the orientation and activity of the formed MoS2 slabs. Appl. Catal., A 528, 74 (2016).CrossRefGoogle Scholar
Il Park, J., Nakano, K., Kim, Y.K., Miyawaki, J., Yoon, S.H., and Mochida, I.: Characteristics on HDS over amorphous silica–alumina in single and dual catalytic bed system for gas oil. Catal. Today 164, 100 (2011).CrossRefGoogle Scholar
Caillot, M., Chaumonnot, A., Digne, M., Poleunis, C., Debecker, D.P., and Van Bokhoven, J.A.: Synthesis of amorphous aluminosilicates by grafting: Tuning the building and final structure of the deposit by selecting the appropriate synthesis conditions. Microporous Mesoporous Mater. 185, 179 (2014).CrossRefGoogle Scholar
Mouat, A.R., George, C., Kobayashi, T., Pruski, M., Van Duyne, R.P., Marks, T.J., and Stair, P.C.: Highly dispersed SiOx/Al2O3 catalysts illuminate the reactivity of isolated silanol sites. Angew. Chem., Int. Ed. 54, 13346 (2015).CrossRefGoogle Scholar
Sánchez-Minero, F., Ramírez, J., Gutiérrez-Alejandre, A., Fernández-Vargas, C., Torres-Mancera, P., and Cuevas-Garcia, R.: Analysis of the HDS of 4,6-DMDBT in the presence of naphthalene and carbazole over NiMo/Al2O3–SiO2(x) catalysts. Catal. Today 133–135, 267 (2008).CrossRefGoogle Scholar
Fernández-Vargas, C., Ramírez, J., Gutiérrez-Alejandre, A., Sánchez-Minero, F., Cuevas-García, R., and Torres-Mancera, P.: Synthesis, characterization and evaluation of NiMo/SiO2–Al2O3 catalysts prepared by the pH-swing method. Catal. Today 130, 337 (2008).CrossRefGoogle Scholar
Busca, G., Lorenzelli, V., Ramis, G., and Willey, R.J.: Surface sites on spinel-type and corundum-type metal oxide powders. Langmuir 9, 1492 (1993).CrossRefGoogle Scholar
Herrera-Gomez, A., Bravo-Sanchez, M., Ceballos-Sanchez, O., and Vazquez-Lepe, M.O.: Practical methods for background subtraction in photoemission spectra. Surf. Interface Anal. 46, 897 (2014).CrossRefGoogle Scholar
Grant, J.T.: Methods for quantitative analysis in XPS and AES. Surf. Interface Anal. 14, 271 (1989).CrossRefGoogle Scholar
Herrera-Gomez, A.: Effect of monochromator X-ray Bragg reflection on photoelectric cross section. J. Electron Spectrosc. Relat. Phenom. 182, 81 (2010).CrossRefGoogle Scholar
Duayne whitehurst, D., Isoda, T., and Mochida, I.: Present state of the art and future challenges in the hydrodesulfurization of polyaromatic sulfur compounds. Adv. Catal. 42, 345 (1998).Google Scholar
Egorova, M. and Prins, R.: Competitive hydrodesulfurization of 4,6-dimethyldibenzothiophene, hydrodenitrogenation of 2-methylpyridine, and hydrogenation of naphthalene over sulfided NiMo/γ-Al2O3. J. Catal. 224, 278 (2004).CrossRefGoogle Scholar
Sánchez-Minero, F., Ramírez, J., Cuevas-Garcia, R., Gutierrez-Alejandre, A., and Fernández-Vargas, C.: Kinetic study of the HDS of 4,6-DMDBT over NiMo/Al2O3–SiO2(x) catalysts. Ind. Eng. Chem. Res. 48, 11781185 (2009).CrossRefGoogle Scholar
Weber, R.S.: Weber-Effect of locat structure UV-vis absorption edges of Mo oxides.pdf. J. Catal. 151, 470 (1995).CrossRefGoogle Scholar
Fournier, M., Louis, C., Che, M., Chaquin, P., and Masure, D.: Polyoxometallates as models for oxide catalysts. Part I. An UV-visible reflectance study of polyoxomolybdates: Influence of polyhedra arrangement on the electronic transitions and comparison with supported molybdenum catalysts. J. Catal. 119, 400 (1989).CrossRefGoogle Scholar
Viscarra Rossel, R.A., McGlynn, R.N., and McBratney, A.B.: Determining the composition of mineral-organic mixes using UV-vis-NIR diffuse reflectance spectroscopy. Geoderma 137, 70 (2006).CrossRefGoogle Scholar
Stranick, A., Houalla, M., and Hercules, D.M.: The effect of boron on the state and dispersion catalysts of Co/A12O3. J. Catal. 104, 396 (1987).CrossRefGoogle Scholar
Herrera, J.E., Balzano, L., Borgna, A., Alvarez, W.E., and Resasco, D.E.: Relationship between the structure/composition of Co–Mo catalysts and their ability to produce single-walled carbon nanotubes by CO disproportionation. J. Catal. 204, 129 (2001).CrossRefGoogle Scholar
Kasztelan, S., Toulhoat, H., Grimblot, J., and Bonnelle, J.P.: A geometrical model of the active phase of hydrotreating catalysts. Appl. Catal. 13, 127 (1984).CrossRefGoogle Scholar
Payen, E., Hubaud, R., Kasztelan, S., Poulet, O., and Grimblot, J.: Morphology of MoS2 HREM study. J. Catal. 147, 123 (1994).CrossRefGoogle Scholar
Hensen, E.J.M., Kooyman, P.J., Van der Meer, Y., Van der Kraan, A.M., De Beer, V.H.J., Van Veen, J.A.R., Van Santen, R.A., Hensen, E.J.M., Kooyman, P.J., Van der Meer, Y., and Van der Kraan, A.M.: The relation between morphology and hydrotreating activity for supported MoS2 particles. J. Catal. 199, 224 (2001).CrossRefGoogle Scholar
Toledo-Antonio, J.A., Cortés-Jácome, M.A., Angeles-Chávez, C., Escobar, J., Barrera, M.C., and López-Salinas, E.: Highly active CoMoS phase on titania nanotubes as new hydrodesulfurization catalysts. Appl. Catal., B 90, 213 (2009).CrossRefGoogle Scholar
Qiu, L. and Xu, G.: Peak overlaps and corresponding solutions in the X-ray photoelectron spectroscopic study of hydrodesulfurization catalysts. Appl. Surf. Sci. 256, 3413 (2010).CrossRefGoogle Scholar
Li, H., Li, M., Chu, Y., Liu, F., and Nie, H.: Essential role of citric acid in preparation of efficient NiW/Al2O3 HDS catalysts. Appl. Catal., A 403, 75 (2011).CrossRefGoogle Scholar
Damyanova, S., Petrov, L., and Grange, P.: XPS characterization of zirconium-promoted CoMo hydrodesulfurization catalysts. Appl. Catal., A 239, 241 (2003).CrossRefGoogle Scholar
Walton, A.S.S., Lauritsen, J.V.V., Topsøe, H., and Besenbacher, F.: MoS2 nanoparticle morphologies in hydrodesulfurization catalysis studied by scanning tunneling microscopy. J. Catal. 308, 306 (2013).CrossRefGoogle Scholar
Le, Z., Afanasiev, P., Li, D., Long, X., and Vrinat, M.: Solution synthesis of the unsupported Ni–W sulfide hydrotreating catalysts. Catal. Today 130, 24 (2008).CrossRefGoogle Scholar
Cabrera-German, D., Gomez-Sosa, G., and Herrera-Gomez, A.: Accurate peak fitting and subsequent quantitative composition analysis of the spectrum of Co 2p obtained with Al Kα radiation: I: Cobalt spinel. Surf. Interface Anal. 48, 252 (2016).CrossRefGoogle Scholar
Okamoto, Y. and Kubota, T.: A model catalyst approach to the effects of the support on Co–Mo hydrodesulfurization catalysts. Catal. Today 86, 31 (2003).CrossRefGoogle Scholar
Lauritsen, J.V., Kibsgaard, J., Olesen, G.H., Moses, P.G., Hinnemann, B., Helveg, S., Nørskov, J.K., Clausen, B.S., Topsøe, H., Lægsgaard, E., and Besenbacher, F.: Location and coordination of promoter atoms in Co- and Ni-promoted MoS2-based hydrotreating catalysts. J. Catal. 249, 220 (2007).CrossRefGoogle Scholar
González-Cortés, S.L.: Comparing the hydrodesulfurization reaction of thiophene on γ-Al2O3 supported CoMo, NiMo, and NiW sulfide catalysts. React. Kinet. Catal. Lett. 97, 131 (2009).CrossRefGoogle Scholar
Supplementary material: File

Romero-Galarza et al. supplementary material

Figures S1-S6

Download Romero-Galarza et al. supplementary material(File)
File 394.2 KB