Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-28T15:11:54.507Z Has data issue: false hasContentIssue false

Resonant vibration analysis for temperature dependence of elastic properties of bulk metallic glass

Published online by Cambridge University Press:  03 March 2011

Sven Bossuyt*
Affiliation:
Department of Mechanics of Materials and Constructions, Vrije Universiteit Brussel (VUB), B-1050 Brussels, Belgium
Sixto Giménez
Affiliation:
Department of Metallurgy and Materials Engineering (MTM), Katholieke Universiteit Leuven, B-3001 Heverlee, Belgium
Jan Schroers
Affiliation:
Liquidmetal Technologies, Lake Forest, California 92630
*
a) Address all correspondence to this author. e-mail: sven.bossuyt@vub.ac.be
Get access

Abstract

The variation of a Zr57Nb5Cu15Ni13Al10 bulk metallic glass’s elastic constants with temperature and thermal history was investigated, using an impulse excitation technique for resonant vibration analysis. The Young’s modulus at 550 K is 78 GPa with a slope of −17 MPa/K in the glass as-produced and increases to 80 GPa with a slope of −26 MPa/K upon annealing. The modulus of the supercooled liquid at 700 K is 74 GPa with a slope of −90 MPa/K, whereas for the crystallized material E = 100 GPa with a slope of −15 MPa/K. These results are interpreted in terms of the vibrational and configurational contributions to the temperature dependence and compared with calorimetry data.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Wang, W.H.: Correlations between elastic moduli and properties in bulk metallic glasses. J. Appl. Phys. 99, 093506 (2006).CrossRefGoogle Scholar
2Novikov, V.N. and Sokolov, A.P.: Poisson’s ratio and the fragility of glass-forming liquids. Nature 431(7011), 961 (2004).CrossRefGoogle ScholarPubMed
3Schroers, J. and Johnson, W.L.: Ductile bulk metallic glass. Phys. Rev. Lett. 93, 255506 (2004).CrossRefGoogle ScholarPubMed
4Lewandowski, J.J., Wang, W.H., and Greer, A.L.: Intrinsic plasticity or brittleness of metallic glasses. Philos. Mag. Lett. 85, 77 (2005).CrossRefGoogle Scholar
5Johnson, W.L. and Samwer, K.: A universal criterion for plastic yielding of metallic glasses with a (T/Tg)2/3 temperature dependence. Phys. Rev. Lett. 95, 195501 (2005).CrossRefGoogle Scholar
6Lind, M.L., Duan, G., and Johnson, W.L.: Isoconfigurational elastic constants and liquid fragility of a metallic glass forming alloy. Phys. Rev. Lett. 97, 015501 (2006).Google Scholar
7Harms, U., Jin, O., and Schwarz, R.B.: Effects of plastic deformation on the elastic modulus and density of bulk amorphous Pd40Ni10Cu30P20. J. Non-Cryst. Solids 317, 200 (2003).CrossRefGoogle Scholar
8 ASTM Committee E-28 on MechanicalTesting, subcommittee E2803 on Elastic Properties: Standard test method for dynamic Young’s modulus, shear modulus and Poisson’s ratio by impulse excitation of vibration, E 1876-99. (ASTM, 2000).Google Scholar
9 ENV 843-2, Advanced technical ceramics—Monolithic ceramics, mechanical properties at room temperature—Part 2: Determination of elastic moduli. (CEN, 1996).Google Scholar
10Sol, H., Hua, H., DeVisscher, J., Vantomme, J., and DeWilde, W.P.: A mixed numerical/experimental technique for the nondestructive identification of the stiffness properties of fibre reinforced composite materials. NDT Int. 30, 85 (1997).CrossRefGoogle Scholar
11Roebben, G., Basu, B., Vleugels, J., Van Humbeeck, J., and Van der Biest, O.: The innovative impulse excitation technique for high-temperature mechanical spectroscopy. J. Alloys Compd. 310, 284 (2000).Google Scholar
12Firstov, G.S., Van Humbeeck, J., and Koval, Y.N.: High-temperature shape-memory alloys-Some recent developments. Mater. Sci. Eng., A 378, 2 (2004).Google Scholar
13Giménez, S., Vagnon, A., Bouvard, D., and Van der Biest, O.: Effect of the green density on the dewaxing behaviour of unaxially pressed powder compacts. Mater. Sci. Eng., A 430, 277 (2006).CrossRefGoogle Scholar
14Roebben, G., Bollen, B., Brebels, A., Van Humbeeck, J., and Van der Biest, O.: Impulse excitation apparatus to measure resonant frequencies, elastic moduli, and internal friction at room and high temperature. Rev. Sci. Instrum. 68, 4511 (1997).Google Scholar
15Nowick, A.S. and Berry, B.S.: Anelastic Relaxation in Crystalline Solids (Academic Press, New York, NY, 1972).Google Scholar
16Zhang, Y., Zhao, D.Q., Wang, R.J., and Wang, W.H.: Formation and properties of Zr48Nb8Cu14Ni12Be18 bulk metallic glass. Acta Mater. 51, 1971 (2003).Google Scholar
17Gadaud, P. and Pautrot, S.: Characterization of the elasticity and anelasticity of bulk glasses by dynamical subresonant and resonant techniques. J. Non-Cryst. Solids. 316, 146 (2003).Google Scholar
18Keryvin, V., Vaillant, M.L., Rouxel, T., Huger, M., Gloriant, T., and Kawamura, Y.: Thermal stability and crystallisation of a Zr55Cu30Al10Ni5 bulk metallic glass studied by in situ ultrasonic echography. Intermetallics 10, 1289 (2002).CrossRefGoogle Scholar
19Hufnagel, T.C., Ott, R.T., and Almer, J.: Structural aspects of elastic deformation of a metallic glass. Phys. Rev. B. 73, 064204 (2006).CrossRefGoogle Scholar
20Schroter, K., Wilde, G., Willnecker, R., Weiss, M., Samwer, K., and Donth, E.: Shear modulus and compliance in the range of the dynamic glass transition for metallic glasses. Eur. Phys. J. B. 5, 1 (1998).Google Scholar