Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-13T05:45:49.180Z Has data issue: false hasContentIssue false

Reversible multilevel resistance switching of Ag–La0.7Ca0.3MnO3–Pt heterostructures

Published online by Cambridge University Press:  31 January 2011

Dashan Shang
Affiliation:
Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People’s Republic of China
Lidong Chen*
Affiliation:
Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People’s Republic of China
Qun Wang
Affiliation:
Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People’s Republic of China
Zihua Wu
Affiliation:
Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People’s Republic of China
Wenqing Zhang
Affiliation:
Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People’s Republic of China
Xiaomin Li
Affiliation:
Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People’s Republic of China
*
b) Address all correspondence to this author. e-mail: cld@mail.sic.ac.cn
Get access

Abstract

The electric-pulse–induced resistance switching of the Ag–La0.7Ca03MnO3(LCMO)–Pt heterostructures was studied. The multilevel resistance switching (MLRS), in which several resistance states can be obtained, was observed in the switching from high to low resistance state (HRS → LRS) by applying electric pulse with various pulse voltages. The threshold pulse voltages of MLRS are related to the initial resistance values as well as the switching directions. On the other hand, the resistance switching behavior from low to high resistance states (LRS → HRS) shows unobvious MLRS. According to the resistance switching behavior in serial and parallel modes, MLRS was explained by the parallel effect of multifilament forming/rupture in the Ag–LCMO interface layer. The present results suggest a possible application of Ag–LCMO–Pt heterostructures as multilevel memory devices.

Type
Outstanding Symposium Papers
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Yamamoto, T., Kano, H., Higo, Y., Ohba, K., Mizuguchi, T., Hosomi, M., Bessho, K., Hashimoto, M., Ohmori, H., Sone, T., Endo, K., Kubo, S., Narisawa, H., Otsuka, W., Okazaki, N., Motoyoshi, M., Nagao, H.Sagara, T.: Magnetoresistive random-access memory operation error by thermally activated reversal. J. Appl. Phys. 97, 10P503 2005CrossRefGoogle Scholar
2Scott, J.F.: Ferroelectric Memories Springer Berlin 2000 1–77CrossRefGoogle Scholar
3Lankhorst, M.H.R., Ketelaars, B.W.S.M.M.Wolters, R.A.M.: Low-cost and nanoscale non-volatile memory concept for future silicon chips. Nat. Mater. 4, 347 2005CrossRefGoogle ScholarPubMed
4Naber, R.C.G., Tanase, C., Blom, P.W.M., Gelinck, G.H., Marsman, A.W., Touwwslager, F.J., Setayesh, S.de Leeuw, D.M.: High-performance solution-processed polymer ferroelectric filed-effect transistors. Nat. Mater. 4, 243 2005CrossRefGoogle Scholar
5Rozenberg, M.J., Inoue, I.H.Sánchez, M.J.: Nonvolatile memory with multilevel switching: A basic model. Phys. Rev. Lett. 92, 178302 2004CrossRefGoogle ScholarPubMed
6Liu, S.Q., Wu, N.J.Ignatiev, A.: Electric-pulse-induced reversible resistance change effect in magnetoresistive films. Appl. Phys. Lett. 76, 2749 2000CrossRefGoogle Scholar
7Dong, R., Wang, Q., Chen, L.D., Shang, D.S., Chen, T.L., Li, X.M.Zhang, W.Q.: Retention behavior of the electric-pulse-induced reversible resistance change effect in Ag–La0.7Ca0.3MnO3–Pt sandwiches. Appl. Phys. Lett. 86, 172107 2005CrossRefGoogle Scholar
8Beck, A., Bednorz, J.G., Gerber, Ch., Rossel, C.Widmer, D.: Reproducible switching effect in thin oxide films for memory applications. Appl. Phys. Lett. 77, 139 2000CrossRefGoogle Scholar
9Watanabe, Y., Bednorz, J.G., Bietsch, A., Gerber, Ch., Widmer, D., Beck, A.Wind, S.J.: Current-driven insulator-conductor transition and nonvolatile memory in chromium-doped SrTiO3 single crystals. Appl. Phys. Lett. 78, 3738 2001CrossRefGoogle Scholar
10Seo, S., Lee, M.J., Seo, D.H., Jeoung, E.J., Suh, D-S., Joung, Y.S., Yoo, I.K., Hwang, I.R., Kim, S.H., Byun, I.S., Choi, J-S.Park, B.H.: Reproducible resistance switching in polycrystalline NiO films. Appl. Phys. Lett. 85, 5655 2004CrossRefGoogle Scholar
11Rohde, C., Choi, B.J., Jeong, D.S., Choi, S., Zhao, J.S.Hwang, C.S.: Identification of a determining parameter for resistive switching of TiO2 thin films. Appl. Phys. Lett. 86, 262907 2005CrossRefGoogle Scholar
12Sakamaoto, T., Sunamura, H., Kawaura, H., Hasegawa, T., Nakayama, T., Aono, M.: Nanometer-scale switches using copper sulfide. Appl. Phys. Lett. 82, 3032 2003CrossRefGoogle Scholar
13Van der Sluis, P.: Non-volatile memory cells based on ZnxCd1−xS ferroelectric Schottky diodes. Appl. Phys. Lett. 82, 4089 2003CrossRefGoogle Scholar
14Ma, L., Xu, Q.Yang, Y.: Organic nonvolatile memory by controlling the dynamic copper-ion concentration within organic layer. Appl. Phys. Lett. 84, 4908 2004CrossRefGoogle Scholar
15Quyang, J.Y., Chu, C-W., Szmanda, C.R., Ma, L.P.Yang, Y.: Programmable polymer thin film and non-volatile memory device. Nat. Mater. 3, 918 2004Google Scholar
16Mukherjee, B.Pal, A.J.: Multilevel conductance and memory in ultrathin organic films. Appl. Phys. Lett. 85, 2116 2004CrossRefGoogle Scholar
17Bandyopadhyay, A.Pal, A.J.: Multilevel conductivity and conductance switching in supramolecular structures of an organic molecule. Appl. Phys. Lett. 84, 999 2004CrossRefGoogle Scholar
18Shang, D.S., Wang, Q., Chen, L.D., Dong, R., Li, X.M.Zhang, W.Q.: Effect of carrier trapping on the hysteresis current-voltage characteristics in Ag/La0.7Ca0.3MnO3/Pt heterostructures. Phys. Rev. B 73, 245427 2006CrossRefGoogle Scholar
19Choi, B.J., Jeong, D.S., Kim, S.K., Rohde, C., Choi, S., Oh, J.H., Kim, H.J., Hwang, C.S., Szot, K., Waser, R., Reichenberg, B.Tiedke, S.: Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition. J. Appl. Phys. 98, 033715 2005CrossRefGoogle Scholar
20Kim, D.C., Seo, S., Ahn, S.E., Suh, D.S., Lee, M.J., Park, B.H., Yoo, I.K., Baek, I.G., Kim, H.J., Yim, E.K., Lee, J.E., Park, S.O., Kim, H.S., Chung, U-In, Moon, J.T.Ryu, B.I.: Electrical observations of filamentary conductions for the resistive memory switching in NiO films. Appl. Phys. Lett. 88, 202102 2006CrossRefGoogle Scholar
21Rozenberg, M.J., Inoue, I.H.Sánchez, M.J.: Strong electron correlation effects in nonvolatile electronic memory devices. Appl. Phys. Lett. 88, 033510 2006CrossRefGoogle Scholar
22Sawa, A., Fujii, T., Kawasaki, M.Tokura, Y.: Hysteretic current–voltage characteristics and resistance switching at a rectifying Ti/Pr0.7Ca0.3MnO3 interface. Appl. Phys. Lett. 85, 4073 2004CrossRefGoogle Scholar
23Tsui, S., Baikalov, A., Cmaidalka, J., Sun, Y.Y., Wang, Y.Q., Xue, Y.Y., Chu, C.W., Chen, L.Jacobson, A.J.: Field-induced resistive switching in metal-oxide interfaces. Appl. Phys. Lett. 85, 317 2004CrossRefGoogle Scholar
24Nian, Y.B., Strozier, J., Wu, N.J., Chen, X.Ignatiev, A.: Evidence for an oxygen diffusion model for the electric pulse induced resistance change effect in transition-metal oxides. Phys. Rev. Lett. 98, 146403 2007CrossRefGoogle ScholarPubMed
25Chen, X., Wu, N.J., Strozier, J.Ignatiev, A.: Spatially extended nature of resistive switching in perovskite oxide thin films. Appl. Phys. Lett. 89, 063507 2006CrossRefGoogle Scholar