Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-28T06:04:54.618Z Has data issue: false hasContentIssue false

Review: Micro- and nanostructured surface engineering for biomedical applications

Published online by Cambridge University Press:  28 December 2012

Emma Luong-Van*
Affiliation:
Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Research Link, Singapore 117602
Isabel Rodriguez
Affiliation:
Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Research Link, Singapore 117602
Hong Yee Low
Affiliation:
Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Research Link, Singapore 117602
Noha Elmouelhi
Affiliation:
Advanced Technologies and Regenerative Medicine, LLC, A Johnson and Johnson Company, Somerville, New Jersey 08876
Bruce Lowenhaupt
Affiliation:
Advanced Technologies and Regenerative Medicine, LLC, A Johnson and Johnson Company, Somerville, New Jersey 08876
Sriram Natarajan
Affiliation:
Advanced Technologies and Regenerative Medicine, LLC, A Johnson and Johnson Company, Somerville, New Jersey 08876
Chee Tiong Lim
Affiliation:
Advanced Technologies and Regenerative Medicine, LLC, A Johnson and Johnson Company, Somerville, New Jersey 08876
Rita Prajapati
Affiliation:
Advanced Technologies and Regenerative Medicine, LLC, A Johnson and Johnson Company, Somerville, New Jersey 08876
Murty Vyakarnam
Affiliation:
Advanced Technologies and Regenerative Medicine, LLC, A Johnson and Johnson Company, Somerville, New Jersey 08876
Kevin Cooper
Affiliation:
Advanced Technologies and Regenerative Medicine, LLC, A Johnson and Johnson Company, Somerville, New Jersey 08876
*
a)Address all correspondence to this author. e-mail: luonge@imre.a-star.edu.sg
Get access

Abstract

The engineering of well-defined micro- and nanoscaled surface topographies on biomedical metals and polymeric materials has been explored as a strategy to control biological responses. In this review, the ability of surface features engineered by a variety of methods to promote or reduce protein, blood, and bacterial adhesion is discussed independent of surface chemistry. The interaction of proteins with surface topography is fundamentally important and influences the conformation, the types of protein, as well as the overall amount of protein adhesion, which in many instances is increased over the associated increase in surface area. The use of superhydrophobic surface features is discussed as a manner to engineer antifouling surfaces with protein, blood, and bacterial resistance.

Type
Invited Feature Paper
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Schulte, V.A., Diez, M., Moller, M., and Lensen, M.C.: Topography-induced cell adhesion to Acr-sP(EO-stat-PO) hydrogels: The role of protein adsorption. Macromol. Biosci. 11, 13781386 (2011).CrossRefGoogle ScholarPubMed
Ota-Tsuzuki, C., Datte, C.E., Nomura, K.A., Cardoso, L.A.G., and Shibli, J.A.: Influence of titanium surface treatments on formation of the blood clot extension. J. Oral Implantol. 37, 641647 (2011).CrossRefGoogle ScholarPubMed
Cei, S., Legitimo, A., Barachini, S., Consolini, R., Sammartino, G., Mattii, L., Gabriele, M., and Graziani, F.: Effect of laser micromachining of titanium on viability and responsiveness of osteoblast-like cells. Implant Dentistry 20, 285291 (2011).CrossRefGoogle ScholarPubMed
Orsini, E., Salgarello, S., Martini, D., Bacchelli, B., Quaranta, M., Pisoni, L., Bellei, E., Joechler, M., and Ottani, V.: Early healing events around titanium implant devices with different surface microtopography: A pilot study in an in vivo rabbit model. Scientific World J. 2012, 349842 (2012).CrossRefGoogle Scholar
Chai, F., Ochsenbein, A., Traisnel, M., Busch, R., Breme, J., and Hildebrand, H.F.: Improving endothelial cell adhesion and proliferation on titanium by sol-gel derived oxide coating. J. Biomed. Mater. Res. Part A 92(2), 754765 (2010).CrossRefGoogle ScholarPubMed
Kammerer, P.W., Gabriel, M., Al-Nawas, B., Scholz, T., Kirchmaier, C.M., and Klein, M.O.: Early implant healing: promotion of platelet activation and cytokine release by topographical, chemical and biomimetical titanium surface modifications in vitro. Clin. Oral Implants Res. 23, 504510 (2012).CrossRefGoogle ScholarPubMed
Stanford, C.M.: Surface modification of biomedical and dental implants and the processes of inflammation, wound healing and bone formation. Int. J. Mol. Sci. 11, 354369 (2010).CrossRefGoogle Scholar
Le Guehennec, L., Soueidan, A., Layrolle, P., and Amouriq, Y.: Surface treatments of titanium dental implants for rapid osseointegration. Dent. Mater. 23, 844854 (2007).CrossRefGoogle ScholarPubMed
Khang, D., Lu, J., Yao, C., Haberstroh, K.M., and Webster, T.J.: The role of nanometer and sub-micron surface features on vascular and bone cell adhesion on titanium. Biomaterials 29(8), 970983 (2008).CrossRefGoogle ScholarPubMed
Kim, B.S. and Kim, I.S.: Recent nanofiber technologies. Polym. Rev. 51, 235238 (2011).CrossRefGoogle Scholar
Song, W.L., Veiga, D.D., Custodio, C.A., and Mano, J.F.: Bioinspired degradable substrates with extreme wettability properties. Adv. Mater. 21, 1830 (2009).CrossRefGoogle Scholar
Minelli, C., Kikuta, A., Tsud, N., Ball, M.D., and Yamamoto, A.: A micro-fluidic study of whole blood behaviour on PMMA topographical nanostructures. J. Nanobiotechnol. 6, 3 (2008).CrossRefGoogle ScholarPubMed
Leung, B.O., Hitchcock, A.P., Brash, J.L., Scholl, A., and Doran, A.: Phase segregation in polystyrene-polylactide blends. Macromolecules 42, 16791684 (2009).CrossRefGoogle Scholar
Schricker, S.R., Palacio, M.L.B., and Bhushan, B.: Antibody sensed protein surface conformation. Mater. Today 14, 616621 (2011).CrossRefGoogle Scholar
Leung, B.O., Hitchcock, A.P., Cornelius, R., Brash, J.L., Scholl, A., and Doran, A.: X-ray spectromicroscopy study of protein adsorption to a polystyrene-polylactide blend. Biomacromolecules 10, 18381845 (2009).CrossRefGoogle ScholarPubMed
Shiu, J.Y. and Chen, P.: Addressable protein patterning via switchable superhydrophobic microarrays. Adv. Funct. Mater. 17, 26802686 (2007).CrossRefGoogle Scholar
Tsougeni, K., Vourdas, N., Tserepi, A., Gogolides, E., and Cardinaud, C.: Mechanisms of oxygen plasma nanotexturing of organic polymer surfaces: From stable super hydrophilic to super hydrophobic surfaces. Langmuir 25, 1174811759 (2009).CrossRefGoogle ScholarPubMed
Zhang, F.X. and Low, H.Y.: Ordered three-dimensional hierarchical nanostructures by nanoimprint lithography. Nanotechnology 17, 18841890 (2006).CrossRefGoogle Scholar
Shiu, J.Y., Kuo, C.W., Whang, W.T., and Chen, P.L.: Observation of enhanced cell adhesion and transfection efficiency on superhydrophobic surfaces. Lab. A Chip 10, 556558 (2010).CrossRefGoogle ScholarPubMed
Schift, H.: Nanoimprint lithography: An old story in modern times? A review. J. Vac. Sci. Technol., B 26, 458480 (2008).CrossRefGoogle Scholar
Roach, P., Farrar, D., and Perry, C.C.: Interpretation of protein adsorption: Surface-induced conformational changes. J. Am. Chem. Soc. 127, 81688173 (2005).CrossRefGoogle ScholarPubMed
Dong, L., Nypelo, T., Osterberg, M., Laine, J., and Alava, M.: Modifying the wettability of surfaces by nanoparticles: Experiments and modeling using the Wenzel law. Langmuir 26, 1456314566 (2010).CrossRefGoogle ScholarPubMed
Koh, L.B., Rodriguez, I., and Venkatraman, S.S.: The effect of topography of polymer surfaces on platelet adhesion. Biomaterials 31, 15331545 (2010).CrossRefGoogle ScholarPubMed
Koc, Y., de Mello, A.J., McHale, G., Newton, M.I., Roach, P., and Shirtcliffe, N.J.: Nano-scale superhydrophobicity: Suppression of protein adsorption and promotion of flow-induced detachment. Lab. A Chip 8, 582586 (2008).CrossRefGoogle ScholarPubMed
Zheng, J., Song, W., Huang, H., and Chen, H.: Protein adsorption and cell adhesion on polyurethane/Pluronic surface with lotus leaf-like topography. Colloids Surf., B 77(2), 234239 (2010).CrossRefGoogle ScholarPubMed
Wang, R.C.C., Hsieh, M.C., and Lee, T.M.: Effects of nanometric roughness on surface properties and fibroblast’s initial cytocompatibilities of Ti6Al4V. Biointerphases 6, 8797 (2011).CrossRefGoogle ScholarPubMed
Brammer, K.S., Choi, C., Frandsen, C.J., Oh, S., and Jin, S.: Hydrophobic nanopillars initiate mesenchymal stem cell aggregation and osteo-differentiation. Acta Biomater. 7, 683690 (2011).CrossRefGoogle ScholarPubMed
Shi, J., Peroz, C., Peyrade, D., Salari, J., Belotti, M., Huang, W.H., and Chen, Y.: Tri-layer soft UV imprint lithography and fabrication of high density pillars. Microelectron. Eng. 83, 16641668 (2006).CrossRefGoogle Scholar
Liu, C.C.: Rapid fabrication of microfluidic chip with three-dimensional structures using natural lotus leaf template. Microfluid. Nanofluid. 9, 923931 (2010).CrossRefGoogle Scholar
Chen, H., Song, W., Zhou, F., Wu, Z.K., Huang, H., Zhang, J.H., Lin, Q., and Yang, B.: The effect of surface microtopography of poly(dimethylsiloxane) on protein adsorption, platelet and cell adhesion. Colloids Surf., B 71, 275281 (2009).CrossRefGoogle ScholarPubMed
Sela, M.N., Badihi, L., Rosen, G., Steinberg, D., and Kohavi, D.: Adsorption of human plasma proteins to modified titanium surfaces. Clin. Oral Implants Res. 18, 630638 (2007).CrossRefGoogle ScholarPubMed
Scopelliti, P.E., Borgonovo, A., Indrieri, M., Giorgetti, L., Bongiorno, G., Carbone, R., Podesta, A., and Milani, P.: The effect of surface nanometre-scale morphology on protein adsorption. PLoS One 5(7), e11862 (2010).CrossRefGoogle ScholarPubMed
Riedel, M., Muller, B., and Wintermantel, E.: Protein adsorption and monocyte activation on germanium nanopyramids. Biomaterials 22, 23072316 (2001).CrossRefGoogle ScholarPubMed
Rechendorff, K., Hovgaard, M.B., Foss, M., Zhdanov, V.P., and Besenbacher, F.: Enhancement of protein adsorption induced by surface roughness. Langmuir 22, 1088510888 (2006).CrossRefGoogle ScholarPubMed
Elter, P., Lange, R., and Beck, U.: Atomic force microscopy studies of the influence of convex and concave nanostructures on the adsorption of fibronectin. Colloids Surf., B 89, 139146 (2012).CrossRefGoogle ScholarPubMed
Gonzalez-Garcia, C., Sousa, S.R., Moratal, D., Rico, P., and Salmeron-Sanchez, M.: Effect of nanoscale topography on fibronectin adsorption, focal adhesion size and matrix organisation. Colloids Surf., B 77(2), 181190 (2010).CrossRefGoogle ScholarPubMed
Elter, P., Lange, R., and Beck, U.: Electrostatic and dispersion interactions during protein adsorption on topographic nanostructures. Langmuir 27, 87678775 (2011).CrossRefGoogle ScholarPubMed
Rockwell, G.P., Lohstreter, L.B., and Dahn, J.R.: Fibrinogen and albumin adsorption on titanium nanoroughness gradients. Colloids Surf., B 91, 9096 (2012).CrossRefGoogle ScholarPubMed
Huang, Y., Lue, X.Y., Ma, J.W., and Huang, N.: In vitro investigation of protein adsorption and platelet adhesion on inorganic biomaterial surfaces. Appl. Surf. Sci. 255, 257259 (2008).CrossRefGoogle Scholar
Jedlicka, S.S., McKenzie, J.L., Leavesley, S.J., Little, K.M., Webster, T.J., Robinson, J.P., Nivens, D.E., and Rickus, J.L.: Sol-gel derived materials as substrates for neuronal differentiation: Effects of surface features and protein conformation. J. Mater. Chem. 16, 32213230 (2006).CrossRefGoogle Scholar
Lord, M.S., Cousins, B.G., Doherty, P.J., Whitelock, J.M., Simmons, A., Williams, R.L., and Milthorpe, B.K.: The effect of silica nanoparticulate coatings on serum protein adsorption and cellular response. Biomaterials 27, 48564862 (2006).CrossRefGoogle ScholarPubMed
Roach, P., Farrar, D., and Perry, C.C.: Surface tailoring for controlled protein adsorption: Effect of topography at the nanometer scale and chemistry. J. Am. Chem. Soc. 128, 39393945 (2006).CrossRefGoogle ScholarPubMed
Penttinen, N., Silvennoinen, M., Hason, S., and Silvennoinen, R.: Directional sensing of protein adsorption on titanium with a light-induced periodic structure. J. Phys. Chem. C 115, 1295112959 (2011).CrossRefGoogle Scholar
Keselowsky, B.G., Collard, D.M., and Garcia, A.J.: Surface chemistry modulates fibronectin conformation and directs integrin binding and specificity to control cell adhesion. J. Biomed. Mater. Res. Part A 66(2), 247259 (2003).CrossRefGoogle ScholarPubMed
Michael, K.E., Vernekar, V.N., Keselowsky, B.G., Meredith, J.C., Latour, R.A., and Garcia, A.J.: Adsorption-induced conformational changes in fibronectin due to interactions with well-defined surface chemistries. Langmuir 19, 80338040 (2003).CrossRefGoogle Scholar
Denis, F.A., Hanarp, P., Sutherland, D.S., Gold, J., Mustin, C., Rouxhet, P.G., and Dufrene, Y.F.: Protein adsorption on model surfaces with controlled nanotopography and chemistry. Langmuir 18, 819828 (2002).CrossRefGoogle Scholar
Brydone, A.S., Dalby, M.J., Berry, C.C., Dominic Meek, R.M., and McNamara, L.E.: Grooved surface topography alters matrix-metalloproteinase production by human fibroblasts. Biomed. Mater. 6(3), 035005 (2011).CrossRefGoogle ScholarPubMed
Ferraz, N., Carlsson, J., Hong, J., and Ott, M.K.: Influence of nanoporesize on platelet adhesion and activation. J. Mater. Sci. - Mater. Med. 19, 31153121 (2008).CrossRefGoogle ScholarPubMed
Milner, K.R., Snyder, A.J., and Siedlecki, C.A.: Development of novel submicron textured polyether(urethane urea) for decreasing platelet adhesion. Asaio J. 51(5), 578584 (2005).CrossRefGoogle ScholarPubMed
Zhou, M., Yang, J.H., Ye, X., Zheng, A.R., Li, G., Yang, P.F., Zhu, Y., and Cai, L.: Blood platelet’s behavior on nanostructured superhydrophobic surface. J. Nano Res. 2, 129136 (2008).CrossRefGoogle Scholar
Ye, X., Shao, Y.L., Zhou, M., Li, J., and Cai, L.: Research on micro-structure and hemo-compatibility of the artificial heart valve surface. Appl. Surf. Sci. 255, 66866690 (2009).CrossRefGoogle Scholar
Sun, T.L., Tan, H., Han, D., Fu, Q., and Jiang, L.: No platelet can adhere - largely improved blood compatibility on nanostructured superhydrophobic surfaces. Small 1, 959963 (2005).CrossRefGoogle ScholarPubMed
Milner, K.R., Snyder, A.J., and Siedlecki, C.A.: Sub-micron texturing for reducing platelet adhesion to polyurethane biomaterials. J. Biomed. Mater. Res. Part A 76A, 561570 (2006).CrossRefGoogle Scholar
Kikuchi, L., Park, J.Y., Victor, C., and Davies, J.E.: Platelet interactions with calcium-phosphate-coated surfaces. Biomaterials 26(26) 52855295 (2005).CrossRefGoogle ScholarPubMed
Hou, X.M., Wang, X.B., Zhu, Q.S., Bao, J.C., Mao, C., Jiang, L.C., and Shen, J.A.: Preparation of polypropylene superhydrophobic surface and its blood compatibility. Colloids Surf., B 80, 247250 (2010).CrossRefGoogle ScholarPubMed
Minelli, C., Yamamoto, A., and Kim, M.J.: Optically patternable polymer films as model interfaces to study cellular behaviour on topographically structured materials. J. Biomater. Sci., Polym. Ed. 22, 577588 (2011).CrossRefGoogle ScholarPubMed
Park, J.Y. and Davies, J.E.: Red blood cell and platelet interactions with titanium implant surfaces. Clin. Oral Implants Res. 11, 530539 (2000).CrossRefGoogle ScholarPubMed
Park, J.Y., Gemmell, C.H., and Davies, J.E.: Platelet interactions with titanium: modulation of platelet activity by surface topography. Biomaterials 22, 26712682 (2001).CrossRefGoogle ScholarPubMed
Rizzello, L., Sorce, B., Sabella, S., Vecchio, G., Galeone, A., Brunetti, V., Cingolani, R., and Pompa, P.P.: Impact of nanoscale topography on genomics and proteomics of adherent bacteria. ACS Nano 5, 18651876 (2011).CrossRefGoogle ScholarPubMed
Komaromy, A.Z., Li, S.Y., Zhang, H.L., Nicolau, D.V., Boysen, R.I., and Hearn, M.T.W.: Arrays of nano-structured surfaces to probe the adhesion and viability of bacteria. Microelectron. Eng. 91, 3943 (2012).CrossRefGoogle Scholar
Truong, V.K., Lapovok, R., Estrin, Y.S., Rundell, S., Wang, J.Y., Fluke, C.J., Crawford, R.J., and Ivanova, E.R.: The influence of nano-scale surface roughness on bacterial adhesion to ultrafine-grained titanium. Biomaterials 31, 36743683 (2010).CrossRefGoogle ScholarPubMed
Ivanova, E.P., Truong, V.K., Webb, H.K., Baulin, V.A., Wang, J.Y., Mohammodi, N., Wang, F., Fluke, C., and Crawford, R.J.: Differential attraction and repulsion of Staphylococcus aureus and Pseudomonas aeruginosa on molecularly smooth titanium films. Scientific Rep. 1, 165 (2011).CrossRefGoogle ScholarPubMed
Crick, C.R., Ismail, S., Pratten, J., and Parkin, I.P.: An investigation into bacterial attachment to an elastomeric superhydrophobic surface prepared via aerosol assisted deposition. Thin Solid Films 519, 37223727 (2011).CrossRefGoogle Scholar
Chung, K.K., Schumacher, J.F., Sampson, E.M., Burne, R.A., Antonelli, P.J., and Brennana, A.B.: Impact of engineered surface microtopography on biofilm formation of Staphylococcus aureus. Biointerphases 2, 8994 (2007).CrossRefGoogle ScholarPubMed
Whitehead, K.A., Colligon, J., and Verran, J.: Retention of microbial cells in substratum surface features of micrometer and sub-micrometer dimensions. Colloids Surf., B 41, 129138 (2005).CrossRefGoogle ScholarPubMed
Eginton, P.J., Gibson, H., Holah, J., Handley, P.S., and Gilbert, P.: The influence of substratum properties on the attachment of bacterial-cells. Colloids Surf., B 5, 153159 (1995).CrossRefGoogle Scholar
Whitehead, K.A., Rogers, D., Colligon, J., Wright, C., and Verran, J.: Use of the atomic force microscope to determine the effect of substratum surface topography on the ease of bacterial removal. Colloids Surf., B 51, 4453 (2006).CrossRefGoogle ScholarPubMed
Puckett, S.D., Taylor, E., Raimondo, T., and Webster, T.J.: The relationship between the nanostructure of titanium surfaces and bacterial attachment. Biomaterials 31, 706713 (2010).CrossRefGoogle ScholarPubMed
Taylor, R.L., Verran, J., Lees, G.C., and Ward, A.J.P.: The influence of substratum topography on bacterial adhesion to polymethyl methacrylate. J. Mater. Sci. - Mater. Med. 9, 1722 (1998).CrossRefGoogle ScholarPubMed
Teixeira, P., Trindade, A.C., Godinho, M.H., Azeredo, J., Oliveira, R., and Fonseca, J.G.: Staphylococcus epidermidis adhesion on modified urea/urethane elastomers. J. Biomater. Sci., Polym. Ed. 17(1–2), 239246 (2006).CrossRefGoogle ScholarPubMed
Ivanova, E.P., Truong, V.K., Wang, J.Y., Berndt, C.C., Jones, R.T., Yusuf, I.I., Peake, I., Schmidt, H.W., Fluke, C., Barnes, D., and Crawford, R.J.: Impact of nanoscale roughness of titanium thin film surfaces on bacterial retention. Langmuir 26, 19731982 (2010).CrossRefGoogle ScholarPubMed