Hostname: page-component-5f745c7db-xx4dx Total loading time: 0 Render date: 2025-01-06T23:28:29.661Z Has data issue: true hasContentIssue false

A review of recent developments in Fe3Al-based alloys

Published online by Cambridge University Press:  31 January 2011

C.G. McKamey
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831–6115
J.H. DeVan
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831–6115
P.F. Tortorelli
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831–6115
V.K. Sikka
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831–6115
Get access

Abstract

Fe3Al-based iron aluminides have been of interest for many years because of their excellent oxidation and sulfidation resistance. However, limited room temperature ductility (<5%) and a sharp drop in strength above 600 °C have limited their consideration for use as structural materials. Recent improvements in tensile properties, especially improvements in ductility produced through control of composition and microstructure, and advances in the understanding of environmental embrittlement in intermetallics, including iron aluminides, have resulted in renewed interest in this system for structural applications. The purpose of this paper is to summarize recent developments concerning Fe3Al-based aluminides, including alloy development efforts and environmental embrittlement studies. This report will concentrate on literature published since about 1980, and will review studies of fabrication, mechanical properties, and corrosion resistance that have been conducted since that time.

Type
Commentaries and Reviews
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ziegler, N., AIME Trans. 100, 267 (1932).Google Scholar
2. Sykes, C. and Bampfylde, J., J. Iron and Steel Inst. 130, 389 (1934).Google Scholar
3. Nachman, J. F. and Buehler, W. J., Application, Properties, and Fabrication of Thermenol Type Alloys, NAVORD Report 4237 (U.S. Naval Ordnance Laboratory, Silver Spring, MD, May 4, 1956). Available from Defense Technical Information Center, Alexandria, VA.Google Scholar
4. Bordeau, R. G., Development of Iron Aluminides, AFWAL-TR-87–4009 (Air Force Wright Aeronautical Laboratories, Wright-Patterson Air Force Base, OH, May 1987).CrossRefGoogle Scholar
5. Culbertson, G. and Kortovich, C. S., Development of Iron Aluminides AFWAL-TR-85–4155 (Air Force Wright Aeronautical Laboratories, Wright-Patterson Air Force Base, OH, March 1986).Google Scholar
6. Sikka, V. K., McKamey, C. G., Howell, C.R., and Baldwin, R.H., Fabrication and Mechanical Properties of Fe3Al-Based Aluminides, ORNL/TM-11465 (Oak Ridge National Laboratory, Oak Ridge, TN, March 1990).CrossRefGoogle Scholar
7. McKamey, C. G., in Proceedings of the Fourth Annual Conference on Fossil Energy Materials, ORNL/FMP-90/1 (U.S. Department of Energy, Oak Ridge, TN, August 1990), p. 197.Google Scholar
8. Nachman, J. F. and Buehler, W. J., The Fabrication and Properties of 16-Alfenol—A New Strategic Aluminum-Iron Alloy, NAVORD Report 2819 (U.S. Naval Ordnance Laboratory, Silver Spring, MD, April 9, 1953). Available from Defense Technical Information Center, Alexandria, VA.Google Scholar
9. Nachman, J. F. and Buehler, W. J., Applications and Properties of Iron (10–17)% Aluminum Alloy, NAVORD Report 4130 (Naval Ordnance Laboratory, Silver Spring, MD, December 5, 1955). Available from Defense Technical Information Center, Alexandria, VA.Google Scholar
10. Nachman, J. F. and Buehler, W. J., Thermenol, A Non-Strategic Aluminum-Iron Base Alloy for High Temperature Service, NAVORD Report 3700 (U.S. Naval Ordnance Laboratory, Silver Spring, MD, June 1954). Available from Defense Technical Information Center, Alexandria, VA.Google Scholar
11. Iron-Aluminum Alloy Systems, WADC Technical Report 52–298, Parts 1–14 (Wright Air Development Center, Wright-Patterson AFB, OH, 1957–59).Google Scholar
12. Justusson, W., Zackay, V. F., and Morgan, E. R., Trans. ASM 49, 905 (1957).Google Scholar
13. Stoloff, N. S. and Davies, R. G., Acta Metall. 12, 473 (1964).CrossRefGoogle Scholar
14. Leamy, H. J., The Plastic Deformation Behavior of Long Range Ordered Iron-Aluminum Alloys, Ph.D. Thesis, Iowa State University, 1967.Google Scholar
15. Leamy, H. J. and Kayser, F. X., Phys. Status Solidi 34, 765 (1969).CrossRefGoogle Scholar
16. Leamy, H. J., Gibson, E. D., and Kayser, F. X., Acta Metall. 15, 1827 (1967).CrossRefGoogle Scholar
17. Leamy, H. J., Acta Metall. 15, 1839 (1967).CrossRefGoogle Scholar
18. Leamy, H. J., Kayser, F. X, and Marcinkowski, M. J., Philos. Mag. 20, 763 (1969); Philos Mag. 20, 779 (1969).CrossRefGoogle Scholar
19. Marcinkowski, M. J., Taylor, M. E., and Kayser, F.X., J. Mater. Sci. 10, 406 (1975).CrossRefGoogle Scholar
20. Inouye, H., Liu, C. T., and Horton, J.A., Physical Metallurgy and Mechanical Properties of Iron Aluminides, final report (unpublished) for Office of Naval Research, Department of Navy, Arlington, VA, by Oak Ridge National Laboratory, for work from November 1982 to September 1984.Google Scholar
21. McKamey, C. G., Liu, C. T., Cathcart, J. V., David, S. A., and Lee, E. H., Evaluation of Mechanical and Metallurgical Properties of Fe3Al-Based Aluminides, ORNL/TM-10125 (Oak Ridge National Laboratory, Oak Ridge, TN, September 1986).Google Scholar
22. McKamey, C. G., Liu, C. T., David, S. A., Horton, J. A., Pierce, D. H., and Campbell, J. J., Development of Iron Aluminides for Coal Conversion Systems, ORNL/TM-10793 (Oak Ridge National Laboratory, Oak Ridge, TN, July 1988).Google Scholar
23. McKamey, C. G., Sikka, V. K, Zacharia, T., David, S. A., and Alexander, D. J., in Fossil Energy Advanced Research and Technology Development Materials Program Seminannual Progress Report for the Period Ending September 30, 1990, ORNL/FMP-90/2 (U.S. Department of Energy, Oak Ridge, TN, December 1990), p. 235.Google Scholar
24. Judkins, R. R. and Braski, D. N., Proceedings of the Fourth Annual Conference on Fossil Energy Materials, ORNL/FMP-90/1 (U.S. Department of Energy, Oak Ridge, TN, August 1990).Google Scholar
25. Hook, R. E., Johnson, D. W., and Erfort, P.J., “A Review of Some of the Key Work on the Mechanical Properties of Fe-Al Alloys,” presented at ASM Materials Week, Orlando, FL, October 7, 1986, available in handout form from R.E. Hook, Armco Research and Technology, Middletown, OH.Google Scholar
26. Hardwick, D. and Wallwork, G., Rev. High Temp. Mater. 4, 47 (1978).Google Scholar
27. Tomaszewicz, P. and Wallwork, G. R., Rev. High Temp. Mater. 4, 76 (1978).Google Scholar
28. Holladay, J. W., Review of Development in Iron-Aluminum-Base Alloys, DMIC Memo 82 (Defense Metals Information Center, Battelle Memorial Institute, Columbus, OH, January 30, 1961).Google Scholar
29. Lepkowski, W. J. and Holladay, J. W., The Present State of Development of Iron-Aluminum-Base Alloys, Titanium Metallurgical Laboratory, Battelle Memorial Institute (Memorandum of November 18, 1957).CrossRefGoogle Scholar
30. Binary Alloy Phase Diagrams, edited by Massalski, T. B. (ASM, Metals Park, OH, 1986).Google Scholar
31. Oki, K., Hasaka, M., and Eguchi, T., Jpn. J. Appl. Phys. 12, 1522 (1973).CrossRefGoogle Scholar
32. Swann, P. R., Duff, W. R., and Fisher, R. M., Trans. AIME 245, 851 (1969).Google Scholar
33. Okamoto, H. and Beck, P. A., Metall. Trans. 2, 569 (1971).CrossRefGoogle Scholar
34. Allen, S. M. and Cahn, J. W., Acta Metall. 23, 1017 (1975).CrossRefGoogle Scholar
35. Allen, S. M. and Cahn, J. W., Acta Metall. 24, 425 (1976).CrossRefGoogle Scholar
36. Davies, R. G., TMS-AIME 230, 903 (1964).Google Scholar
37. Lawley, A., Coll, J. A., and Cahn, R.W., TMS-AIME 218, 166 (1960).Google Scholar
38. Marcinkowski, M. J. and Brown, N., Acta Metall. 9, 764 (1961).CrossRefGoogle Scholar
39. Crawford, R. C., Ray, I. L. F., and Cockayne, D. J. H., Philos. Mag. 27, 1 (1973).CrossRefGoogle Scholar
40. Slaughter, E. R. and Das, S. K., in Rapid Solidification Processing: Principles and Technologies, II, edited by Mehrabian, R., Kear, B. H., and Cohen, M. (Claitor's Pub. Div., Baton Rouge, LA, 1980.), p. 354.Google Scholar
41. Mendiratta, M. G., Ehlers, S. K., Dimiduk, D. M., Kerr, W. R., Mazdiyasni, S., and Lipsitt, H. A., in High-Temperature Ordered IntermetallicAlloys II, edited by Stoloff, N.S., Koch, C. C., Liu, C.T., and Izumi, O. (Mater. Res. Soc. Symp. Proc. 81, Pittsburgh, PA, 1987), p. 393.Google Scholar
42. Mendiratta, M. G. and Lipsitt, H. A., in High-Temperature Ordered Intermetallic Alloys, edited by Koch, C. C., Liu, C. T., and Stoloff, N. S. (Mater. Res. Soc. Symp. Proc. 39, Pittsburgh, PA, 1985), p. 155.Google Scholar
43. Mendiratta, M. G., Ehlers, S. K., and Lipsitt, H. A., Metall Trans. A18, 509 (1987).CrossRefGoogle Scholar
44. Dimiduk, D. M., Mendiratta, M. G., Banerjee, D., and Lipsitt, H. A., Acta Metall. 36, 2947 (1988).CrossRefGoogle Scholar
45. Mendiratta, M. G. and Ehlers, S. K., Metall. Trans. A14, 2435 (1983).CrossRefGoogle Scholar
46. Ehlers, S. K. and Mendiratta, M. G., Tensile Behavior of Fe-31 at %AlAlloy, AFWAL-TR-82–4089 (Air Force Wright Aeronautical Laboratories, Wright-Patterson Air Force Base, OH, July 1982).Google Scholar
47. Mendiratta, M. G., Ehlers, S. K., Chatterjee, D. K., and Lipsitt, H. A., in Rapid Solidification Processing: Principles and Technologies III (NBS, Gaithersburg, MD, 1982), p. 240.Google Scholar
48. Mendiratta, M. G., Kim, H-M., and Lipsitt, H. A., Metall. Trans. A15, 395 (1984).CrossRefGoogle Scholar
49. Ehlers, S. K. and Mendiratta, M. G., J. Mater. Sci. 19, 2203 (1984).CrossRefGoogle Scholar
50. Kerr, W. R., Metall. Trans. A17, 2298 (1986).CrossRefGoogle Scholar
51. Mendiratta, M. G., Ehlers, S. K., Chatterjee, D. K., and Lipsitt, H. A., Metall. Trans. A18, 283 (1987).CrossRefGoogle Scholar
52. Horton, J. A., Liu, C. T., and Koch, C. C., in High-Temperature Alloys: Theory and Design, edited by Stiegler, J.O. (TMS, Warrendale, PA, 1984), p. 309.Google Scholar
53. Inouye, H., in High-Temperature Ordered Intermetallic Alloys, edited by Koch, C. C., Liu, C. T., and Stoloff, N. S. (Mater. Res. Soc. Symp. Proc. 39, Pittsburgh, PA, 1985), p. 255.Google Scholar
54. McKamey, C. G., Horton, J. A., and Liu, C. T., in High-Temperature Ordered Intermetallic Alloys II, edited by Stoloff, N.S., Koch, C. C., Liu, C. T., and Izumi, O. (Mater. Res. Soc. Symp. Proc. 81, Pittsburgh, PA, 1987), p. 321.Google Scholar
55. David, S. A., Horton, J. A., McKamey, C. G., Zacharia, T., and Reed, R. W., Welding, J. 68, 372 (1989).Google Scholar
56. Morgand, P., Mouturat, P., and Sainfort, G., Acta Metall. 16, 867 (1968).CrossRefGoogle Scholar
57. David, S. A., Zacharia, T., and Reed, R. W., in Proceedings of The Fourth Annual Conference on Fossil Energy Materials, ORNL/FMP-90/1 (U. S. Department of Energy, Oak Ridge, TN, August 1990), p. 207M.Google Scholar
58. Ash, D. I., Edwards, G. R., and Maguire, M. C., in Weldability of Materials (ASM INT., Metals Park, OH, 1990), p. 269.Google Scholar
59. Ash, D. I., Edwards, G. R., and David, S. A., in Proceedings of the Fourth Annual Conference on Fossil Energy Materials, ORNL/FMP-90/1 (U.S. Department of Energy, Oak Ridge, TN, August 1990), p. 241.Google Scholar
60. McKamey, C. G., Horton, J. A., and Liu, C. T., Scripta Metall. 22, 1679 (1988).CrossRefGoogle Scholar
61. McKamey, C. G., Horton, J.A., and Liu, C. T., J. Mater. Res. 4, 1156 (1989).CrossRefGoogle Scholar
62. McKamey, C. G. and Horton, J. A., Metall. Trans. A20, 751 (1989).CrossRefGoogle Scholar
63. Wright, R. N., in Proceedings of the Fourth Annual Conference on Fossil Energy Materials, ORNL/FMP-90/1 (U.S. Department of Energy, Oak Ridge, TN, August 1990), p. 231.Google Scholar
64. Liu, C. T., Lee, E. H., and McKamey, C. G., Scripta Metall. 23, 875 (1989).CrossRefGoogle Scholar
65. Liu, C. T and McKamey, C.G, in High Temperature Aluminides and Intermetallics, Whang, S.H., Liu, C.T, Pope, D.P, Stiegler, J.O (TMS, Warrendale, PA, 1990). p133Google Scholar
66. Liu, C. T., McKamey, C. G., and Lee, E.H., Scripta Metall. 24, 385 (1990).CrossRefGoogle Scholar
67. George, E. P. and Liu, C. T., “Brittle Fracture and Ductility Improvement in Nickel and Iron Aluminides,” to be published in Proceedings of C-MRS International 90, edited by Li, H. (Elsevier Science Publishers B.V., 1991).Google Scholar
68. Kasul, D. B. and Heldt, L. A., “Environmental Effects on the Mechanical Properties of an Fe-24.6A1 Alloy,” to be published in Environmental Effects on Advanced Materials, edited by Jones, R. H. and Ricker, R. E. (TMS, Warrendale, PA, 1991).Google Scholar
69. Speidel, M. P., in Hydrogen Damage, edited by Beachem, C. D. (ASM, Metals Park, OH, 1977), p. 329.Google Scholar
70. Gest, R. J. and Troiano, A. R., Corrosion 30, 274 (1974).CrossRefGoogle Scholar
71. Takasugi, T. and Izumi, O., Acta Metall. 34, 607 (1986).CrossRefGoogle Scholar
72. Masahashi, N., Takasugi, T., and Izumi, O., Metall. Trans. A19, 353 (1988).CrossRefGoogle Scholar
73. Izumi, O. and Takasugi, T., J. Mater. Res. 3, 426 (1988).CrossRefGoogle Scholar
74. Stoloff, N. S., J. Metals 40, 23 (1988).Google Scholar
75. Kuruvilla, A. K. and Stoloff, N. S., Scripta Metall. 19, 83 (1985).CrossRefGoogle Scholar
76. Buchanan, R. A. and Kim, J. G., in Proceedings of the Fourth Annual Conference on Fossil Energy Materials, ORNL/FMP-90/1 (U.S. Department of Energy, Oak Ridge, TN, August 1990), p. 383.Google Scholar
77. McKamey, C. G. and Liu, C. T., Scripta Metall. 24, 2119 (1990).CrossRefGoogle Scholar
78. Hubbard, C., Oak Ridge National Laboratory, “Phase Equilibria of Fe-28A1 Alloys by High Temperature XRD,” presentation at Denver X-ray Conference, August 1, 1990.Google Scholar
79. Alexander, D. J., DeVan, J. H., and Sikka, V. K., in Proceedings of the Fourth Annual Conference on Fossil Energy Materials, ORNL/FMP-90/1 (U.S. Department of Energy, Oak Ridge, TN, August 1990), p. 215.Google Scholar
80. DeVan, J. H., in Proceedings of the Fourth Annual Conference on Fossil Energy Materials, ORNL/FMP-90/1 (U.S. Department of Energy, Oak Ridge, TN, August 1990), p. 299.Google Scholar
81. Sikka, V. K., in Procedings of the Fourth Annual Conference on Fossil Energy Materials, ORNL/FMP-90/1 (U. S. Department of Energy, Oak Ridge, TN, August 1990), p. 219.Google Scholar
82. Sikka, V. K., in High Temperature Ordered Intermetallic Alloys IV, edited by Johnson, L. A., Pope, D. P., and Stiegler, J. O. (Mater. Res. Soc. Symp. Proc. 213, Pittsburgh, PA, 1991).Google Scholar
83. Sikka, V. K., McKamey, C. G., Howell, C. R., and Baldwin, R. H., Properties of Large Heats of Fe 3Al-Based Alloys, ORNL/TM-11796 (Oak Ridge National Laboratory, Oak Ridge, TN, March 1991).Google Scholar
84. Sikka, V. K., Oak Ridge National Laboratory, unpublished results.Google Scholar
85. Knibloe, J. R., Wright, R. N., and Sikka, V. K., in 1990 Advances in Powder Metallurgy (Metal Powder Industries Federation, Princeton, NJ, 1990), Vol. 2, p. 219.Google Scholar
86. Sikka, V. K., Baldwin, R. H., Howell, C. R., and Reinshagen, J. H., “Powder Production, Processing, and Properties of Fe3Al,” to be published in 1990 Advances in Powder Metallurgy (Metal Powder Industries Federation, Princeton, NJ, 1990), Vol. 2.Google Scholar
87. Sikka, V. K., Baldwin, R. H., Reinshagen, J. H., Knibloe, J. R., and Wright, R. N., in High Temperature Ordered Intermetallic Alloys IV, edited by Johnson, L. A., Pope, D. P., and Stiegler, J. O. (Mater. Res. Soc. Symp. Proc. 213, Pittsburgh, PA, 1991).Google Scholar
88. Diehm, R. S., Kemppainen, M. P., and Mikkola, D. E., Mater, and Man. Proc. 4, 61 (1989).CrossRefGoogle Scholar
89. Vedula, K., Mater, and Man. Proc. 4, 39 (1989).CrossRefGoogle Scholar
90. Diehm, R. S. and Mikkola, D. E., in High-Temperature Ordered Intermetallic Alloys II, edited by Stoloff, N.S., Koch, C.C., Liu, C.T., and Izumi, O. (Mater. Res. Soc. Symp. Proc. 81, Pittsburgh, PA, 1987), p. 329.Google Scholar
91. Fortnum, R. T. and Mikkola, D. E., Mater. Sci. and Eng. 91, 223 (1987).CrossRefGoogle Scholar
92. Longworth, H. P. and Mikkola, D. E., Mater. Sci. and Eng. 96, 213 (1987).CrossRefGoogle Scholar
93. Baker, I., Schulson, E. M., and Stoloff, N.S., in Mechanical Behavior of Rapidly Solidified Materials, edited by Sastry, S. M. L. and MacDonald, B.A. (TMS, Warrendale, PA, 1986), p. 257.Google Scholar
94. Koch, C. C., in High-Temperature Ordered Intermetallic Alloys, edited by Koch, C. C., Liu, C. T., and Stoloff, N. S. (Mater. Res. Soc. Symp. Proc. 39, Pittsburgh, PA, 1985), p. 397.Google Scholar
95. Décamps, B., Gibson, M. A., Morton, A. J., and Wolfenden, A., in High Temperature Ordered Intermetallic Alloys IV, edited by Johnson, L. A., Pope, D. P., and Stiegler, J. O. (Mater. Res. Soc. Symp. Proc. 213, Pittsburgh, PA, 1991).Google Scholar
96. Umakoshi, Y. and Yamaguchi, M., Philos. Mag. A41, 573 (1980).CrossRefGoogle Scholar
97. Umakoshi, Y. and Yamaguchi, M., Philos. Mag. A44, 711 (1981).CrossRefGoogle Scholar
98. Prakash, U., Ph. D. Dissertation, School of Materials, University of Sheffield, Mappin Street, Sheffield, SI 3JD, United Kingdom.Google Scholar
99. Prakash, U., Buckley, R. A., and Jones, H., “Formation of B2 Antiphase Domains in Rapidly Solidified Fe-Al Alloys,” to be published in Philos. Mag. (1991).CrossRefGoogle Scholar
100. Prakash, U., Buckley, R.A., and Jones, H., in High Temperature Ordered Intermetallic Alloys IV, edited by Johnson, L. A., Pope, D. P., and Stiegler, J.O. (Mater. Res. Soc. Symp. Proc. 213, Pittsburgh, PA, 1991).Google Scholar
101. Lawley, A., Vidoz, A. E., and Cahn, R.W., Acta Metall. 9, 287 (1961).CrossRefGoogle Scholar
102. Lawley, A. and Cahn, R.W., J. Phys. Chem. Solids 20, 204 (1961).CrossRefGoogle Scholar
103. Hanada, S., Watanabe, S., Sato, T., and Izumi, O., Scripta Metall. 15, 1345 (1981).CrossRefGoogle Scholar
104. Park, J. W., Moon, I. G., and Yu, J., “Effect of Order-Disorder Transformation Modes on the Anomalous Yield Behavior of Fe3Al Intermetallic Compounds,” submitted to J. Mater. Sci.Google Scholar
105. Park, J. W., Moon, I. G., and Yu, J., “A Study of the Anomalous Yield Behavior of a Hyper-Stoichiometric Fe3Al Intermetallic Compound,” to be published in the Proceedings of C-MRS International 90, edited by Li, H. (Elsevier, 1991).Google Scholar
106. Inden, G. and Pepperhoff, W., Z. Metall. 81, 770(1990).Google Scholar
107. Anthony, L. and Fultz, B., J. Mater. Res. 4, 1132 (1989).CrossRefGoogle Scholar
108. Anthony, L. and Fultz, B., J. Mater. Res. 4, 1140 (1989).CrossRefGoogle Scholar
109. Fultz, B., Gao, Z-Q., and Hamdeh, H., Hyperfine Interactions 54, 521 (1990).CrossRefGoogle Scholar
110. Köster, W., Gödecke, T., and Wachtel, E., “Physical Measurements on Iron-Aluminum-Alloys Between 10 and 50 at. % Al,” Part I, Z. Metall. 71, 765 (1980); Part II, 72, 569 (1981); Part III, 72, 707 (1981); Part IV, 73, 111 (1982); Part V, 73, 502 (1982); Part VI, 74, 705 (1983); Part VII, 75, 161 (1984); Part VIII, 75, 432 (1984); Part IX, 76, 382 (1985); Part X, 76, 676 (1985).Google Scholar
111. Kuentzler, R., J. Phys. 44, 1167 (1983).CrossRefGoogle Scholar
112. Harmouche, M. R. and Wolfenden, A., J. Test. Eval. 13, 424 (1985).CrossRefGoogle Scholar
113. Stephens, J. R., in High-Temperature Ordered Intermetallic Alloys, edited by Koch, C. C., Liu, C. T., and Stoloff, N. S. (Mater. Res. Soc. Symp. Proc. 39, Pittsburgh, PA, 1985), p. 381.Google Scholar
114. Vedula, K. and Stephens, J.R., in High-Temperature Ordered Intermetallic Alloys II, edited by Stoloff, N.S., Koch, C. C., Liu, C.T., and Izumi, O. (Mater. Res. Soc. Symp. Proc. 81, Pittsburgh, PA, 1987), p. 381.Google Scholar
115. Baker, I. and Munroe, P. R., in High Temperature Aluminides and Intermetallics, edited by Whang, S. H., Liu, C. T., Pope, D. P., and Stiegler, J. O. (TMS, Warrendale, PA, 1990), p. 425.Google Scholar
116. Whittenberger, J. D., Mater. Sci. Eng. 57, 77 (1983).CrossRefGoogle Scholar
117. Titran, R. H., Vedula, K. M., and Anderson, G. G., in High-Temperature Ordered Intermetallic Alloys, edited by Koch, C. C., Liu, C. T., and Stoloff, N. S. (Mater. Res. Soc. Symp. Proc. 39, Pittsburgh, PA, 1985), p. 309.Google Scholar
118. Crimp, M. A. and Vedula, K., Mater. Sci. Eng. 78, 193 (1986).CrossRefGoogle Scholar
119. Crimp, M. A., Vedula, K. M., and Gaydosh, D.J., in High-Temperature Ordered Intermetallic Alloys II, edited by Stoloff, N.S., Koch, C.C., Liu, C.T., and Izumi, O. (Mater. Res. Soc. Symp. Proc. 81, Pittsburgh, PA, 1987), p. 499.Google Scholar
120. Gaydosh, D. J., Draper, S. L., and Nathal, M.V., Metall. Trans. A20, 1701 (1989).CrossRefGoogle Scholar
121. Gaydosh, D. J. and Crimp, M.A., in High-Temperature Ordered Intermetallic Alloys, edited by Koch, C. C., Liu, C. T., and Stoloff, N. S. (Mater. Res. Soc. Symp. Proc. 39, Pittsburgh, PA, 1985), p. 429.Google Scholar
122. Baker, I. and Gaydosh, D. J., in High-Temperature Ordered Intermetallic Alloys II, edited by Stoloff, N.S., Koch, C.C., Liu, C.T., and Izumi, O. (Mater. Res. Soc. Symp. Proc. 81, Pittsburgh, PA, 1987), p. 315.Google Scholar
123. Wittig, J. E., Vogt, E., Moller, R., and Frommeyer, G., Scripta Metall. 21, 721 (1987).CrossRefGoogle Scholar
124. Gaydosh, D. J. and Nathal, M. V., Scripta Metall. 24,1281 (1990).CrossRefGoogle Scholar
125. Baker, I. and Gaydosh, D. J., Mater. Sci. and Eng. 96, 147 (1987).CrossRefGoogle Scholar
126. Schmidt, B., Nagpal, P., and Baker, I., in High Temperature Ordered Intermetallic Alloys III, edited by Liu, C. T., Taub, A. I., Stoloff, N. S., and Koch, C. C. (Mater. Res. Soc. Symp. Proc. 133, Pittsburgh, PA, 1989), p. 755.Google Scholar
127. Munroe, P. R. and Baker, I., J. Mater. Sci. 24, 4246 (1989).CrossRefGoogle Scholar
128. Munroe, P. R. and Baker, I., “Observation of 〈001〉 Dislocations and a Mechanism for Transgranular Fracture on {001} in FeAl,” to be published in Acta Metall.Google Scholar
129. Baker, I. and Gaydosh, D. J, Phys. Status Solidi (a) 96, 185 (1986).CrossRefGoogle Scholar
130. Baker, I.and Gaydosh, D. J, Metallog. 20, 347 (1987).CrossRefGoogle Scholar
131. Nagpal, P. and Baker, I., Metall. Trans. A21, 2281 (1990).CrossRefGoogle Scholar
132. Liu, C. T. and George, E. P., in High Temperature Ordered Intermetallic Alloys IV, edited by Johnson, L. A., Pope, D. P., and Stiegler, J. O. (Mater. Res. Soc. Symp. Proc. 213, Pittsburgh, PA, 1991).Google Scholar
133. Liu, C. T. and George, E. P., Scripta Metall. 24, 1285 (1990).CrossRefGoogle Scholar
134. Natesan, K. and Park, J-H., in Fossil Energy Advanced Research and Technology Development Materials Program Semiannual Progress Report for Period Ending September 30, 1990, ORNL/FMP-90/2 (U. S. Department of Energy, Oak Ridge, TN, December 1990), p. 303.Google Scholar
135. Tomaszewicz, P. and Wallwork, G. R., Oxid. Metall. 19, 165 (1983).CrossRefGoogle Scholar
136. DeVan, J. H., in Oxidation of High-Temperature Intermetallics, edited by Grobstein, T. and Doychak, J. (TMS, Warrendale, PA, 1989), p. 107.Google Scholar
137. Tortorelli, P. F., Oak Ridge National Laboratory, Oak Ridge, TN, unpublished results, December 1990.Google Scholar
138. Smialek, J. L., Doychak, J., and Gaydosh, D. J., in Oxidation of High-Temperature Intermetallics, edited by Grobstein, T. and Doychak, J. (TMS, Warrendale, PA, 1989), p. 83.Google Scholar
139. McKamey, C. G. and Liu, C. T., in Surface Gasification Materials Program Semiannual Progress Report for the Period Ending September 30, 1986, ORNL/SGMP-86/2 (U. S. Department of Energy, Oak Ridge, TN, January 1987), p. 45.Google Scholar
140. DeVan, J. H., Oak Ridge National Laboratory, Oak Ridge, TN, unpublished results, December 1990.Google Scholar
141. Lee, W. H. and Lin, R. Y., in Proceedings of the Fourth Annual Conference on Fossil Energy Materials, ORNL/FMP-90/1 (U. S. Department of Energy, Oak Ridge, TN, August 1990), p. 475.Google Scholar
142. Golightly, F. A., Stott, F.H., and Wood, G.C., Oxid. Met. 10, 163 (1976).CrossRefGoogle Scholar
143. Taniguchi, S., Shibata, T., and Tsuruoka, H., Trans. Jpn. Inst. Met. 28, 788 (1987).CrossRefGoogle Scholar
144. Ramanarayanan, T. A., Raghavan, M., and Petkovic-Luton, R., Oxid. Metall. 22, 83 (1984).CrossRefGoogle Scholar
145. Fox, P. and Tatlock, G. J., Mater. Sci. and Technol. 4, 439 (1988).CrossRefGoogle Scholar
146. Larpin, J. P., Lambertin, M., and Colson, J. C., in Materials and Coatings to Resist High Temperature Corrosion, edited by Holmes, D. R. and Rahmel, A. (Applied Science, London, 1978), p. 1.Google Scholar
147. Strafford, K. N. and Manifold, R., Oxid. Metall. 5, 85 (1972).CrossRefGoogle Scholar
148. Smith, P. J., Jackson, P. R. S., and Smeltzer, W. W., in Fundamental Aspects of High Temperature Corrosion II, Proceedings Volume 86–9, edited by Shores, D.A. and Yurek, G.J. (The Electrochemical Society, Pennington, NJ, 1986), p. 19.Google Scholar
149. Patnaik, P. C. and Smeltzer, W. W., Oxid. Metall. 23, 53(1985).CrossRefGoogle Scholar
150. Patnaik, P. C. and Smeltzer, W. W., J. Electrochem. Soc. 132, 1226 (1985).CrossRefGoogle Scholar
151. Strafford, K. N. and Datta, P.K., Mater. Sci. Technol. 5, 765 (1989).CrossRefGoogle Scholar
152. Smith, P. J. and Smeltzer, W. W., Oxid. Metall. 28, 291 (1987).CrossRefGoogle Scholar
153. Smeltzer, W. W. and Patnaik, P. C., J. Electrochem. Soc. 132, 1233 (1985).CrossRefGoogle Scholar
154. Devan, J. H., Hsu, H. S., and Howell, M., Sulfidation/Oxidation Properties of Iron-Based Alloys Containing Niobium and Aluminum, ORNL/TM-11176 (Oak Ridge National Laboratory, Oak Ridge, TN, May 1989).CrossRefGoogle Scholar
155. Weber, J. K. R. and Hocking, M. G., Oxid. Metall. 32, 1 (1989).CrossRefGoogle Scholar
156. McNallan, M., in Thermochemistry of Alloys, edited by Brodowsky, H. and Schaller, H-J. (Kluwer Academic, Dordrecht, The Netherlands, 1989), p. 495.CrossRefGoogle Scholar
157. Weele, S. Van and Blough, J. L., in Proceedings of the Fourth Annual Conference on Fossil Energy Materials, ORNL/FMP-90/1 (U. S. Department of Energy, Oak Ridge, TN, August 1990), p. 347.Google Scholar
158. Natesan, K. and Podolski, W. F., “Materials Performance in Simulated Fluidized-Bed Combustion Environments,” Corrosion/88 (NACE, Houston, TX, March 1988), paper No. 140.Google Scholar
159. Tortorelli, P. F., Bishop, P. S., and DiStefano, J. R., Selection of Corrosion-Resistant Materials For Use In Molten Nitrate Salts, ORNL/TM-11162 (Oak Ridge National Laboratory, Oak Ridge, TN, October 1989).CrossRefGoogle Scholar
160. Tortorelli, P. F. and Bishop, P. S., “Corrosion of Aluminides by Molten Nitrate Salt,” to be published in Environmental Effects on Advanced Materials, edited by Jones, R. H. and Ricker, R. E. (TMS, Warrendale, PA, 1991).Google Scholar
161. Nachman, J. F. and Duffy, E. R., Corrosion 30, 357 (1974).CrossRefGoogle Scholar
162. Buchanan, R. A. and Kim, J. G., in Fossil Energy Advanced Research and Technology Development Materials Program Semi-annual Progress Report for Period Ending September 30, 1990, ORNL/FMP-90/2 (U. S. Department of Energy, Oak Ridge, TN, December 1990), p. 425.Google Scholar
163. Buchanan, R. A. and Kim, J. G., in Fossil Energy Advanced Research and Technology Development Materials Program Semi-annual Progress Report for Period Ending March 31, 1989, ORNL/FMP-89/1 (U. S. Department of Energy, Oak Ridge, TN, July 1989), p. 553.Google Scholar
164. Buchanan, R. A. and Kim, J. G., in Fossil Energy Advanced Research and Technology Development Materials Program Semi-annual Progress Report for Period Ending September 30, 1989, ORNL/FMP-89/2 (U. S. Department of Energy, Oak Ridge, TN, January 1990), p. 593.Google Scholar