Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-13T01:46:42.517Z Has data issue: false hasContentIssue false

Review: The nucleation of disorder

Published online by Cambridge University Press:  31 January 2011

R.W. Cahn
Affiliation:
Division of Engineering & Applied Science, California Institute of Technology, Pasadena, California 91125
W.L. Johnson
Affiliation:
Division of Engineering & Applied Science, California Institute of Technology, Pasadena, California 91125
Get access

Abstract

Four types of phase transformation that involve the conversion of crystalline phases into more disordered forms are reviewed: melting, disordering of superlattices, amorphization by diffusion between crystalline phases, and irradation amorphization. In the review emphasis is placed on evidence for the heterogeneous nucleation of the product phases; in this connection, the role of surfaces, antiphase domain boundaries, dislocations, vacancies, and grain boundaries is specifically discussed. All of these features have been either observed, or hypothesized, to play a role as heterogeneous nucleation sites in one or more of the four transformations. An attempt is made to draw parallels between nucleation mechanisms in the various processes.

Type
Commentaries and Reviews
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Boyer, L. L., Phase Transitions 5, 1 (1985).CrossRefGoogle Scholar
2Venkataraman, G. and Sahoo, D., Pramana 24, 317 (1985).CrossRefGoogle Scholar
3Willens, R. H., Kornblit, A., Testardi, L. R., and Nakahara, S., Phys. Rev. B 25, 290 (1982).Google Scholar
4Cahn, R. W., Nature 273, 491 (1978).Google Scholar
5Cotterill, R. J. M., J. Cryst. Growth 48, 582 (1980).CrossRefGoogle Scholar
6Turnbull, D., J. Chem. Phys. 20, 1022 (1952).Google Scholar
7Christian, J. W., The Theory of Transformations in Metals and Alloys (Pergamon, Oxford, 1981), 2nd edition, p. 448.Google Scholar
8Williamson, S., Mourou, G., and Li, J. C. M., Phys. Rev. Lett. 52, 23 (1984).CrossRefGoogle Scholar
9Dages, J., Gleiter, H., and Perepezko, J. H., in the Proceedings of the Materials Research Society Symposium on Phase Transitions in Condensed Systems–Experiment and Theory, December 1985, Boston (to be published).Google Scholar
10Rossouw, C. J. and Donnelly, S.E., Phys. Rev. Lett. 55, 2960 (1985).CrossRefGoogle Scholar
11Tanner, L. E. and Leamy, H. J., in Order-Disorder Transformations in Alloys (Springer, Berlin, 1974), p. 180.CrossRefGoogle Scholar
12Irani, R. S. and Cahn, R. W., J. Mater. Sci. 8, 1453 (1973).CrossRefGoogle Scholar
13Horton, J. A., Dasgupta, A., and Liu, C. T. in High-Temperature Ordered Intermetallic Alloys, edited by Koch, C. C., Liu, C. T., and Stoloff, N. S. (Materials Research Society, Pittsburgh, PA, 1985), Vol. 39, p. 109.Google Scholar
14Cahn, R. W., Siemers, P. A., Geiger, J. E., and Bardhan, P. (submitted to Acta Metall.).Google Scholar
15Cahn, R. W., Siemers, P. A., and Hall, E. L. (submitted to Acta Metall.).Google Scholar
16Khachaturyan, A. G., Prog. Mater. Sci. 22, 27 (1978).CrossRefGoogle Scholar
17E, G. McRae and Malic, R. A., Surface Sci. 148, 551 (1984).Google Scholar
18Sonnette, D., Phys. Rev. B 31, 4672 (1985).Google Scholar
19Sanchez, J. M. and Morán-López, J. L., Surface Sci. 157, L297 (1985).CrossRefGoogle Scholar
20Mejía-Lira, F., Morán-López, J. L., and Sanchez, J. M., in the Proceedings of the Workshop on Alloy Theory and Phase Equilibrium, Buenos Aires, August 1985 (in press).Google Scholar
21Rase, C. L. and Mikkola, D. E., Metall. Trans. A 6, 2267 (1975).Google Scholar
22Yeh, X. L., Samwer, K., and Johnson, W. L., Appl. Phys. Lett. 42, 242 (1983).Google Scholar
23Yeh, X. L. and Johnson, W. L., in the Proceedings of the Symposium on Rapidly Solidified Alloys, Boston, MA, December 1985 (Materials Research Society, Pittsburgh, PA, 1986), Vol. 58, p. 63.Google Scholar
24Okamoto, P. R., Hahn, H., and Averback, R. S., in the Proceedings of the Symposium on Beam-Solid Interactions and Phase Transformations, Boston, MA, December 1985 (Materials Research Society, Pittsburgh, PA, 1986), Vol. 51, p. 491.Google Scholar
25Schwarz, R. B and Johnson, W. L., Phys. Rev. Lett. 51, 415 (1983).CrossRefGoogle Scholar
26Rossum, M. van, Nicolet, M.-A., and Johnson, W. L., Phys. Rev. B 29, 5498 (1984).Google Scholar
27Clemens, B. M., Schwarz, R. B., and Johnson, W. L., J. Non-Cryst. Solids 61/62, 817 (1984).CrossRefGoogle Scholar
28Clemens, B. M., Phys. Rev. B 33, 7615 (1986).Google Scholar
29Schroder, H., Samwer, K., and Koster, U., Phys. Rev. Lett. 54, 197 (1985).CrossRefGoogle Scholar
30Schwarz, R. B., Wong, K. L., and Johnson, W. L., J. Non-Cryst. Solids 61/62, 129 (1984).CrossRefGoogle Scholar
31Lin, C.-J. and Spaepen, F., Acta Metall. 34, 1367 (1986).Google Scholar
32Cheng, Y.-T., Johnson, W. L., and Nicolet, M.-A., Appl. Phys. Lett. 47, 800 (1985).Google Scholar
33Johnson, W. L., Atzmon, M., Rossum, M. van, Dolgin, B. P., and Yeh, X. L., in the Proceedings of the 5th International Conference on Rapidly Quenched Metals, edited by Steeb, S. and Warlimont, H. (North-Holland, Amsterdam, 1985), p. 1515.Google Scholar
34Johnson, W. L., in the Proceedings of the Conference on Liquids and Glasses, December 1985 (New York Academy of Sciences, in press); W. L. Johnson, Prog. Mater. Sci. (to be published).Google Scholar
35Saris, F., in Ref. 24; A. M. Vredenberg, J. F. M. Westendorp, F. W. Saris, M. M. van der Pers, and Th. H. de Keijser, J. Mater. Res. (to be published).Google Scholar
36Schwarz, R. B., Petrich, R. R., and Saw, C. K., J. Non-Cryst. Solids 76, 281 (1985).CrossRefGoogle Scholar
37Bloch, J., J. Nucl. Mater. 6, 203 (1962).Google Scholar
38Russell, K. C., in the Proceedings of the International Seminar on Solute-Defect Interaction, Kingston, Ontario, August 1985, edited by Saimote, G., Kidson, G., and Purdy, G. (Pergamon, Oxford, 1985), p. 317.Google Scholar
39Mori, H., Fujita, H., Tendo, M., and Fujita, M., Scripta Metall. 18, 783 (1984); D. E. Luzzi and M. Meshii, Res. Mechanica (to be published).CrossRefGoogle Scholar
40Mori, H., Fujita, H., and Fujita, M., Jpn. J. Appl. Phys. 22, L94 (1983).Google Scholar
41Mori, H. and Fujita, H., in the Proceedings of the Yamada Conference on Dislocations in Solids, edited by Suzuki, H. (University of Tokyo, Tokyo, 1985), p. 563.Google Scholar
42Fujita, H., Mori, H., and Fujita, M., in the Proceedings of the 7th International Conference on High Voltage Electron Microscopy, Berkeley, August 1983, p. 233.Google Scholar
43Luzzi, D. E., Mori, H., Fujita, H., and Meshii, M., Scripta Metal. 18, 957 (1984).CrossRefGoogle Scholar
44Luzzi, D. E., Mori, H., Fujita, H., and Meshii, M., Scripta. Metall. 19, 897 (1985).CrossRefGoogle Scholar
45Luzzi, D. E., Mori, H., Fujita, H., and Meshii, M., in Ref. 24.Google Scholar
46Luzzi, D.E., Mori, H., Fujita, H., and Meshii, M., Acta Metall. 34, 629 (1986).CrossRefGoogle Scholar
47Gittus, J., Irradiation Effects in Crystalline Solids (Applied Science, London, 1978), pp. 53, 98, 105.Google Scholar
48Suehiro, M., Yoshida, N., and Kiritani, M., in Point Defects and Defect Interactions in Metals, edited by Takamura, J., Doyama, M., and Kiritani, M. (University of Tokyo, Tokyo, 1982), p. 798.Google Scholar
49Limoge, Y. and Barbu, A., Phys. Rev. B 30, 2212 (1984).Google Scholar
50Russell, K. C., Prog. Mater. Sci. 28, 229 (1985).Google Scholar
51Pedraza, D. F., J. Mater. Res. 1, 425 (1986).CrossRefGoogle Scholar
52Martin, G., Phys. Rev. B 30, 1424 (1984).Google Scholar
53Glicksman, M. E. and Void, C. C., Surface Sci. 31, 50 (1972).CrossRefGoogle Scholar
54Christel, L. A., Gibbons, J. F., and Sigman, T. W., J. Appl. Phys. 52, 7143 (1981).Google Scholar
55Gibbons, J. F., Proc. IEEE 60, 1062 (1972).CrossRefGoogle Scholar