Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T20:58:02.917Z Has data issue: false hasContentIssue false

Revisiting the structures and energies of silicon 〈110〉 symmetric tilt grain boundaries

Published online by Cambridge University Press:  08 January 2019

Liang Wang
Affiliation:
State Key Laboratory for Strength and Vibration of Mechanical Structures, Shaanxi Engineering Laboratory for Vibration Control of Aerospace Structures, School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
Wenshan Yu*
Affiliation:
State Key Laboratory for Strength and Vibration of Mechanical Structures, Shaanxi Engineering Laboratory for Vibration Control of Aerospace Structures, School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
Shengping Shen*
Affiliation:
State Key Laboratory for Strength and Vibration of Mechanical Structures, Shaanxi Engineering Laboratory for Vibration Control of Aerospace Structures, School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
*
a)Address all correspondence to these authors. e-mail: wenshan@mail.xjtu.edu.cn
Get access

Abstract

Atomistic simulations of 18 silicon 〈110〉 symmetric tilt grain boundaries are performed using Stillinger Weber, Tersoff, and the optimized Modified Embedded Atom Method potentials. We define a novel structural unit classification through dislocation core analysis to characterize the relaxed GB structures. GBs with the misorientation angle θ ranging from 13.44° to 70.53° are solely composed of Lomer dislocation cores. For GBs with θ less than but close to 70.53°, GB ‘step’ appears and the equilibrated states with lowest GB energies can be attained only when such GB ‘step’ is located in the middle of each single periodic GB structure. For the misorientation angles in the range of 93.37° ≤ θ ≤ 148.41°, GB structures become complicated since they contain multiple types of dislocation cores. This work not only facilitates the structural characterization of silicon 〈110〉 STGBs, but also may provide new insights into mirco-structure design in multicrystalline silicon.

Type
Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bringuier, S., Manga, V.R., Runge, K., Deymier, P., and Muralidharan, K.: An atomic scale characterization of coupled grain boundary motion in silicon bicrystals. Philos. Mag. 95, 4118 (2015).CrossRefGoogle Scholar
Stokkan, G.: Twinning in multicrystalline silicon for solar cells. J. Cryst. Growth 384, 107 (2013).CrossRefGoogle Scholar
Wang, Z., Tsurekawa, S., Ikeda, K., Sekiguchi, T., and Watanabe, T.: Relationship between electrical activity and grain boundary structural configuration in polycrystalline silicon. Interface Sci. 7, 197 (1999).CrossRefGoogle Scholar
Chen, J., Sekiguchi, T., Yang, D., Yin, F., Kido, K., and Tsurekawa, S.: Electron-beam-induced current study of grain boundaries in multicrystalline silicon. J. Appl. Phys. 96, 5490 (2004).CrossRefGoogle Scholar
Chen, J., Sekiguchi, T., Xie, R., Ahmet, P., Chikyo, T., Yang, D., Ito, S., and Yin, F.: Electron-beam-induced current study of small-angle grain boundaries in multicrystalline silicon. Scr. Mater. 52, 1211 (2005).CrossRefGoogle Scholar
Chen, J. and Sekiguchi, T.: Carrier recombination activity and structural properties of small-angle grain boundaries in multicrystalline silicon. Jpn. J. Appl. Phys. 46, 6489 (2007).CrossRefGoogle Scholar
Maiti, A., Chisholm, M.F., Pennycook, S.J., and Pantelides, S.T.: Dopant segregation at semiconductor grain boundaries through cooperative chemical rebonding. Phys. Rev. Lett. 77, 1306 (1996).CrossRefGoogle ScholarPubMed
Joonwichien, S., Matsushima, S., and Usami, N.: Effects of crystal defects and their interactions with impurities on electrical properties of multicrystalline Si. J. Appl. Phys. 113, 133503 (2013).CrossRefGoogle Scholar
Takahashi, I., Usami, N., Mizuseki, H., Kawazoe, Y., Stokkan, G., and Nakajima, K.: Impact of type of crystal defects in multicrystalline Si on electrical properties and interaction with impurities. J. Appl. Phys. 109, 033504 (2011).CrossRefGoogle Scholar
Feklisova, O.V., Yu, X., Yang, D., and Yakimov, E.B.: Effect of metal contamination on recombination properties of extended defects in multicrystalline Si. Phys. Status Solidi C 9, 1942 (2012).CrossRefGoogle Scholar
Ambigapathy, S., Natarajan Sathiyamoorthy, V., Ryoji, S., Hiroshi, M., and Yoshiyuki, K.: First-principles calculations on Σ3 grain boundary transition metal impurities in multicrystalline silicon. Jpn. J. Appl. Phys. 49, 04DP02 (2010).Google Scholar
Putaux, J.L. and Thibault-Dessaux, J.: HREM characterization of structural changes in a deformed Σ = 9 (122) grain boundary in silicon. J. Phys. Colloq. 51, C1-C323 (1990).CrossRefGoogle Scholar
Thibault, J., Putaux, J.L., Jacques, A., George, A., Michaud, H.M., and Baillin, X.: Structure and characterization of the dislocations in tilt grain boundaries between Σ = 1 and Σ = 3: A high resolution electron microscopy study. Mater. Sci. Eng., A 164, 93 (1993).CrossRefGoogle Scholar
Möller, H.J.: 〈011〉 tilt boundaries in the diamond cubic lattice. Philos. Mag. A 43, 10451055 (1981).CrossRefGoogle Scholar
Thomson, R.E. and Chadi, D.J.: Theoretical study of the electronic structure of a high-angle tilt grain boundary in Si. Phys. Rev. B 29, 889 (1984).CrossRefGoogle Scholar
Kohyama, M., Yamamoto, R., Ebata, Y., and Kinoshita, M.: The atomic and electronic structure of a (001) tilt grain boundary in Si. J. Phys. C: Solid State Phys. 21, 3205 (1988).CrossRefGoogle Scholar
Morris, J.R., Fu, C.L., and Ho, K.M.: Tight-binding study of tilt grain boundaries in diamond. Phys. Rev. B 54, 132 (1996).CrossRefGoogle Scholar
Kohyama, M., Yamamoto, R., and Doyama, M.: Structures and energies of symmetrical 〈011〉 tilt grain boundaries in silicon. Phys. Status Solidi B 137, 11 (1986).CrossRefGoogle Scholar
Kohyama, M., Yamamoto, R., and Doyama, M.: Reconstructed structures of symmetrical 〈011〉 tilt grain boundaries in silicon. Phys. Status Solidi B 138, 387 (1986).CrossRefGoogle Scholar
Lannoo, M. and Decarpigny, J.N.: Simple tight-binding calculation of the transverse effective charges in III–V, II–VI, and IV–IV compound semiconductors. Phys. Rev. B 8, 5704 (1973).CrossRefGoogle Scholar
Harrison, W.A.: Electronic Structures and the Properties of Solids (Freeman, San Fransisco, 1980); pp. 26, 43.Google Scholar
Sutton, A.P. and Vitek, V.: On the structure of tilt grain boundaries in cubic metals I. Symmetrical tilt boundaries. Philos. Trans. R. Soc., A 309, 1 (1983).Google Scholar
DiVincenzo, D.P., Alerhand, O.L., Schlüter, M., and Wilkins, J.W.: Electronic and structural properties of a twin boundary in Si. Phys. Rev. Lett. 56, 1925 (1986).CrossRefGoogle Scholar
Huang, W.L., Ge, W., Li, C.X., Hou, C.F., Wang, X.W., and He, X.F.: Atomic and electronic structures of Si[001] (130) symmetric tilt grain boundaries based on first-principles calculations. Comput. Mater. Sci. 58, 38 (2012).CrossRefGoogle Scholar
Lazebnykh, V.Y. and Mysovsky, A.S.: Ab initio and atomistic simulation of local structure and defect segregation on the tilt grain boundaries in silicon. J. Appl. Phys. 118, 135704 (2015).CrossRefGoogle Scholar
Levi, A.A., Smith, D.A., and Wetzel, J.T.: Calculated structures for [001] symmetrical tilt grain boundaries in silicon. J. Appl. Phys. 69, 2048 (1991).CrossRefGoogle Scholar
Zhang, J., Wang, C., and Ho, K.: Finding the low-energy structures of Si[001] symmetric tilted grain boundaries with a genetic algorithm. Phys. Rev. B 80, 174102 (2009).CrossRefGoogle Scholar
Stoffers, A., Ziebarth, B., Barthel, J., Cojocaru-Miredin, O., Elsasser, C., and Raabe, D.: Complex nanotwin substructure of an asymmetric Σ9 tilt grain boundary in a silicon polycrystal. Phys. Rev. Lett. 115, 235502 (2015).CrossRefGoogle Scholar
Alfthan, S.v., Kaski, K., and Sutton, A.P.: Order and structural units in simulations of twist grain boundaries in silicon at absolute zero. Phys. Rev. B 74, 134101 (2006).CrossRefGoogle Scholar
Stillinger, F.H. and Weber, T.A.: Computer simulation of local order in condensed phases of silicon. Phys. Rev. B 31, 5262 (1985).CrossRefGoogle ScholarPubMed
Tersoff, J.: New empirical approach for the structure and energy of covalent systems. Phys. Rev. B 37, 6991 (1988).CrossRefGoogle ScholarPubMed
Timonova, M. and Thijsse, B.J.: Optimizing the MEAM potential for silicon. Modell. Simul. Mater. Sci. Eng. 19, 015003 (2011).CrossRefGoogle Scholar
Balamane, H., Halicioglu, T., and Tiller, W.A.: Comparative study of silicon empirical interatomic potentials. Phys. Rev. B 46, 2250 (1992).CrossRefGoogle ScholarPubMed
Narayan, J. and Nandedkar, A.S.: Atomic structure and energy of grain boundaries in silicon, germanium and diamond. Philos. Mag. B 63, 1181 (1991).CrossRefGoogle Scholar
Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comp. Physiol. 117, 1 (1995).CrossRefGoogle Scholar
Alexander, S.: Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Modell. Simul. Mater. Sci. Eng. 18, 015012 (2010).Google Scholar
Tschopp, M.A. and McDowell, D.L.: Structures and energies of Σ3 asymmetric tilt grain boundaries in copper and aluminium. Philos. Mag. 87, 3147 (2007).CrossRefGoogle Scholar
Bollmann, W.: Crystal Defects and Crystalline Interfaces (Springer-Verlag, New York, Heidelberg, Berlin, 1970); pp. 186, 214.CrossRefGoogle Scholar
Bertsekas, D.P.: Nonlinear Programming, 3rd ed. (Athena Scientific, Cambridge, Massachusetts, 2016); pp. 22, 75.Google Scholar
Hirth, J.P. and Lothe, J.: Theory of Dislocations, 2nd ed. (McGraw-Hill, New York, 1982); pp. 59, 92.Google Scholar
Sutton, A.P. and Balluffi, R.W.: Interfaces in Crystalline Materials (Clarendon Press, Oxford, 1995); pp. 87, 88.Google Scholar
Yu, W., Wang, Z., and Shen, S.: Edge dislocations interacting with a Σ11 symmetrical grain boundary in copper upon mixed loading: A quasicontinuum method study. Comput. Mater. Sci. 137, 162 (2017).CrossRefGoogle Scholar
Hull, D. and Bacon, D.J.: Introduction to Dislocations, 5th ed. (Butterworth-Heinemann, Oxford, 2011); pp. 14, 20.Google Scholar
Bourret, A., Desseaux, J., and Renault, A.: Core structure of the Lomer dislocation in germanium and silicon. Philos. Mag. A 45, 1 (1982).CrossRefGoogle Scholar
Valladares, A., Petford-Long, A.K., and Sutton, A.P.: The core reconstruction of the 90° partial dislocation in silicon. Philos. Mag. Lett. 79, 9 (1999).CrossRefGoogle Scholar
Valladares, A. and Sutton, A.P.: The equilibrium structures of the 90° partial dislocation in silicon. J. Phys.: Condens. Matter 17, 7547 (2005).Google Scholar
Choo, Z.M., Liang, M.H., and Li, S.: Atomistic simulation of the core structure of 90° partial dislocation in silicon: A Burgers vector perspective. Key Eng. Mater. 227, 151 (2002).CrossRefGoogle Scholar
Käshammer, P. and Sinno, T.: Interactions of twin boundaries with intrinsic point defects and carbon in silicon. J. Appl. Phys. 114, 083505 (2013).CrossRefGoogle Scholar
Zhao, D. and Li, Y.: Lattice distortion induced site dependent carbon gettering at twin boundaries in silicon. J. Alloys Compd. 712, 599 (2017).CrossRefGoogle Scholar
Kohyama, M., Ichinose, H., Ishida, Y., and Nakanose, M.: Tight-binding calculation of grain boundaries in diamond. Mater. Sci. Forum 207–209, 261 (1996).CrossRefGoogle Scholar
Ihlal, A., Rizk, R., and Hardouin Duparc, O.B.M.: Correlation between the gettering efficiencies and the energies of interfaces in silicon bicrystals. J. Appl. Phys. 80, 2665 (1996).CrossRefGoogle Scholar
Chen, J., Hairie, A., Paumier, E., and Nouet, G.: Energy of the two variants 11A and 11B in silicon and germanium by the semi-empirical tight-binding method. Phys. Status Solidi B 232, 191 (2002).3.0.CO;2-O>CrossRefGoogle Scholar
Zhang, Y.G., Ichinose, H., Nakanose, M., Ito, K., and Ishida, Y.: Structure modelling of Σ3 and Σ9 coincident boundaries in CVD diamond thin films. J. Electron Microsc. 48, 245 (1999).CrossRefGoogle Scholar
Sawada, H. and Ichinose, H.: Structure of {112} Σ3 boundary in silicon and diamond. Scr. Mater. 44, 2327 (2001).CrossRefGoogle Scholar
Masanori, K.: Computational studies of grain boundaries in covalent materials. Modell. Simul. Mater. Sci. Eng. 10, R31 (2002).Google Scholar
Sawada, H., Ichinose, H., and Kohyama, M.: Gap states due to stretched bonds at the (112) Σ3 boundary in diamond. J. Phys.: Condens. Matter 19, 026223 (2007).Google Scholar
Zhao, D. and Li, Y.: Carbon segregation at Σ3 $\left\{ {1\bar{1}\bar{2}} \right\}$ grain boundaries in silicon. Comput. Mater. Sci. 143, 80 (2018).CrossRefGoogle Scholar
Feng, C.B., Nie, J.L., Zu, X.T., Al-Jassim, M.M., and Yan, Y.: Structure and effects of vacancies in Σ3 (112) grain boundaries in Si. J. Appl. Phys. 106, 113506 (2009).CrossRefGoogle Scholar
Tschopp, M.A. and McDowell, D.L.: Asymmetric tilt grain boundary structure and energy in copper and aluminium. Philos. Mag. 87, 3871 (2007).CrossRefGoogle Scholar
Tschopp, M.A., Solanki, K.N., Gao, F., Sun, X., Khaleel, M.A., and Horstemeyer, M.F.: Probing grain boundary sink strength at the nanoscale: Energetics and length scales of vacancy and interstitial absorption by grain boundaries in α-Fe. Phys. Rev. B 85, 064108 (2012).CrossRefGoogle Scholar
Yu, W.S. and Demkowicz, M.J.: Non-coherent Cu grain boundaries driven by continuous vacancy loading. J. Mater. Sci. 50, 4047 (2015).CrossRefGoogle Scholar
Frolov, T., Olmsted, D.L., Asta, M., and Mishin, Y.: Structural phase transformations in metallic grain boundaries. Nat. Commun. 4, 1899 (2013).CrossRefGoogle ScholarPubMed
Von Alfthan, S., Haynes, P.D., Kaski, K., and Sutton, A.P.: Are the structures of twist grain boundaries in silicon ordered at 0 K? Phys. Rev. Lett. 96, 055505 (2006).CrossRefGoogle ScholarPubMed
Lamzatouar, A., El Kajbaji, M., Charaï, A., Benaissa, M., Hardouin Duparc, O.B.M., and Thibault, J.: The atomic structure of Σ = 33{144} 〈011〉 (θ = 20.05°) tilt grain boundary in germanium. Scr. Mater. 45, 1171 (2001).CrossRefGoogle Scholar
Hardouin Duparc, O.B.M. and Torrent, M.: A new type of periodie boundary condition useful for high-temperature atomistic simulations of grain boundaries: Applications in semiconductors. Interface Sci. 2, 7 (1994).CrossRefGoogle Scholar
Ziebarth, B., Mrovec, M., Elsässer, C., and Gumbsch, P.: Interstitial iron impurities at grain boundaries in silicon: A first-principles study. Phys. Rev. B 91, 035309 (2015).CrossRefGoogle Scholar
Sakaguchi, N., Ichinose, H., and Watanabe, S.: Atomic structure of faceted Σ3 CSL grain boundary in silicon: HRTEM and ab initio calculation. Mater. Trans. 48, 2585 (2007).CrossRefGoogle Scholar
Thijsse, B.J.: Relationship between the modified embedded-atom method and Stillinger–Weber potentials in calculating the structure of silicon. Phys. Rev. B 65, 195207 (2002).CrossRefGoogle Scholar

Wang et al. supplementary material

Wang et al. supplementary material 1

Download Wang et al. supplementary material(Video)
Video 3.2 MB

Wang et al. supplementary material

Wang et al. supplementary material 2

Download Wang et al. supplementary material(Video)
Video 9.2 MB
Supplementary material: File

Wang et al. supplementary material

Wang et al. supplementary material 3

Download Wang et al. supplementary material(File)
File 11.1 MB