Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-14T19:17:25.307Z Has data issue: false hasContentIssue false

RF aerosol plasma fabrication of indium tin oxide and tin oxide thin films

Published online by Cambridge University Press:  31 January 2011

D. H. Lee
Affiliation:
Alfred University, Alfred, New York 14802
K. D. Vuong
Affiliation:
Alfred University, Alfred, New York 14802
J. A. A. Williams
Affiliation:
Alfred University, Alfred, New York 14802
J. Fagan
Affiliation:
Alfred University, Alfred, New York 14802
R. A. Condrate Sr
Affiliation:
Alfred University, Alfred, New York 14802
X. W. Wang
Affiliation:
Alfred University, Alfred, New York 14802
Get access

Abstract

Transparent, conductive indium-tin oxide (ITO) and tin oxide thin films were deposited on soda-lime-silicate (SLS) float glass and silica glass substrates by an RF aerosol plasma technique in an atmospheric environment. The ITO films were deposited from solutions with various In: Sn ratios. The dependence of the film properties on the substrate temperature, deposition time, and tin concentration has been studied. The films were characterized by several techniques including XRD, EDS, electrical resistivity, SEM, optical (IR-UV-Vis transmission), Mössbauer, and infrared spectroscopy. The results showed that film phase, morphology, thickness, crystallite size, and conductivity depend on the solution composition and deposition parameters. XRD revealed that In2O3 was present in the film when a In: Sn ratio of 5: 5 or higher was used; otherwise only SnO2 shown. SEM analysis showed that dense and uniform films were formed with particle sizes ranging from approximately 50 nm to 150 nm. The resistivity of the ITO films ranged from 0.12 to 5.0 ohm-cm at room temperature. Optical transmission of the ITO-coated glasses was not different from the uncoated samples. Infrared results indicated that the structure of the near surface of the glasses was significantly modified with a higher indium concentration. The advantages of the atmospheric, RF aerosol plasma deposition process over other techniques are discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Pulker, H. K., Thin Films Science and Technology, Vol. 6, Coatings on Glass (Elsevier Science Publishing, New York, 1985), pp. 391, 458.Google Scholar
2.Chaudhuri, U., Ramkumar, K., and Satyam, M., J. Appl. Phys. 66, 1748 (1989).CrossRefGoogle Scholar
3.Pavuna, D., Dwir, B., Gauzzi, A., James, J., and Kellet, B., in Physical Concepts of Materials for Novel Optoelectronic Device Applications II: Devices Physics and Applications (SPIE 1362, Bellingham, WA, 1991), p. 102.CrossRefGoogle Scholar
4.Kojima, M., Kato, H., Imai, A., and Yoshida, A., J. Appl. Phys. 64, 1902 (1988).CrossRefGoogle Scholar
5.Kohin, M., Wein, S., Traylor, J., Chase, R., and Chapman, J., Opt. Eng. 32, 911 (1993).CrossRefGoogle Scholar
6.Demiryont, H., Nietering, K., Surowiec, R., Brown, F., and Platts, D., Appl. Opt. 26, 3803 (1987).CrossRefGoogle Scholar
7.Goldner, R., Hass, T., Seward, G., Wong, K., Norton, P., Foley, G., Berera, G., Wei, G., Schulz, S., and Chapman, R., Solid State Ionics 28, 1715 (1988).CrossRefGoogle Scholar
8.Ippommastsu, M., Ohnishi, H., Sasaki, H., and Matsumoto, T., J. Appl. Phys. 69, 8368 (1991).CrossRefGoogle Scholar
9.Stjerna, B. and Granqvist, C., Appl. Opt. 29, 447 (1990).CrossRefGoogle Scholar
10.Shigesato, Y., Takaka, S., and Haranoh, T., J. Appl. Phys. 71, 3356 (1992).CrossRefGoogle Scholar
11.Agashe, C., Takwale, M., Bhide, V., Mahamuni, S., and Kulkarni, S., J. Appl. Phys. 70, 7382 (1991).CrossRefGoogle Scholar
12.Chaudhuri, U., Ramkumar, K., and Satyam, M., J. Phys. D: Appl. Phys 22, 1413 (1989).CrossRefGoogle Scholar
13.Chen, S., Yang, K., and Wang, J., Thin Solid Films 162, 305 (1988).CrossRefGoogle Scholar
14.Yuancheng, L., Xiaoren, P., Yihua, Z., Xuemei, Y., and Quan-sheng, W., Vacuum 43, 1071 (1992).CrossRefGoogle Scholar
15.Wan, C., McGrath, R., Keenan, W., and Frank, S., J. Electrochem. Soc. 136, 1459 (1989).CrossRefGoogle Scholar
16.Zawadzki, A., Guinta, C., and Gordon, R., J. Phys. Chem. 96, 5346 (1992).CrossRefGoogle Scholar
17.Wang, X. W., Zhong, H. M., and Snyder, R. L., Appl. Phys. Lett. 57, 1581 (1990).CrossRefGoogle Scholar
18.Wang, X. W., Kudesia, R., Lou, J., Hao, J., Snyder, R. L., Duan, H. M., and Hermann, A. M., in Thermal Spray: International Advances in Coatings Technology (Proc. International Thermal Spray Conference, Orlando, FL, 1992), p. 567.Google Scholar
19.Kudesia, R., Vuong, K. D., Shen, C. Q., Leone, A., Williams, J. A. A., and Wang, X. W., in Manufacture of Ceramic Components, edited by Hiremath, B. V., Bruce, A., and Ghosh, A., Ceramic Transactions (American Ceramic Society, Westerville, OH, 1995), Vol. 49, p. 3.Google Scholar
20.Shen, C. Q., Vong, K. D., Williams, J. A. A., Leone, A., Fagan, J., Snyder, R. L., Wang, X. W., DeMarco, M., Stuckey, J., Petrov, D., and Naughton, M. J., Appl. Supercon. 2, 1 (1995).Google Scholar
21.De Marco, M., Wang, X. W., Snyder, R.L., Simmins, J., Bayya, S., White, M., and Naughton, M. J., J. Appl. Phys. 73, 6287 (1993).CrossRefGoogle Scholar
22.Hamatani, H., Okada, T., and Yoshida, T., J. Am. Ceram. Soc. 72, 2111 (1989).Google Scholar
23.Howard, S. A., SHADOW: A System for X-ray Powder Diffraction Pattern Analysis; Annotated Program Listings and Tutorial (Univ. of Missouri-Rolla, Rolla, MO, 1990).Google Scholar
24.Jarzebski, Z. M., Phys. Status Solidi A 71, 13 (1982).CrossRefGoogle Scholar
25.Parent, Ph., Dexpert, H., and Tourillon, G., J. Electrochem. Soc. 139, 276 (1992).CrossRefGoogle Scholar
26.Parent, Ph., Dexpert, H., and Tourillon, G., J. Electrochem. Soc. 139, 282 (1992).CrossRefGoogle Scholar
27.Carigen, D., Wessel, S., Heinrich, B., and Colbow, K., Adv. Ceram. Mater. 2, 114 (1987).CrossRefGoogle Scholar
28.Smay, G., J. Non-Cryst. Solids 39, 359 (1980).CrossRefGoogle Scholar
29.Schaeffer, H. A., Stengle, M., and Mecha, J., J. Non-Cryst. Solids 80, 400 (1986).CrossRefGoogle Scholar
30.Balasubramanian, N. and Subrahmanyam, A., J. Phys. D: Appl. Phys. 22, 206 (1989).CrossRefGoogle Scholar
31.Sharma, S., Nomura, K., and Ujihira, Y., J. Mater. Sci. 26, 4104 (1991).CrossRefGoogle Scholar
32.Lee, D. H., Vuong, K. D., Condrate, R. A. Sr, and Wang, X. W., unpublished.Google Scholar