Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-28T00:29:48.823Z Has data issue: false hasContentIssue false

Rigorous substrate cleaning process for reproducible thin film hematite (α-Fe2O3) photoanodes

Published online by Cambridge University Press:  19 October 2015

Kirtiman Deo Malviya
Affiliation:
Department of Materials Science and Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
Hen Dotan
Affiliation:
Department of Materials Science and Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
Ki Ro Yoon
Affiliation:
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
Il-Doo Kim
Affiliation:
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
Avner Rothschild*
Affiliation:
Department of Materials Science and Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
*
a) Address all correspondence to this author. e-mail: avner@mt.technion.ac.il
Get access

Abstract

Hematite (α-Fe2O3) photoanodes are widely studied as candidates for water splitting photoelectrochemical (PEC) cells. To speed up the development of high efficiency hematite photoanodes, systematic investigations of the effect of material properties such as dopants and microstructure on PEC properties that determine the photoanode performance are crucial. Toward this end, this work presents a route for reproducible fabrication of thin film hematite photoanodes with reproducible microstructure and PEC properties. Hematite thin (50 nm) films are deposited by pulsed laser deposition from a Ti-doped (1 cation%) Fe2O3 target onto cleaned transparent conducting substrates (fluorinated tin oxide, FTO, coated glass substrates). Special attention is paid to rigorous cleaning of the substrates prior to the hematite deposition, which is found to be crucial for achieving highly reproducible results. Specimens prepared by this route display homogenous conformal coating with very little spread in PEC properties between different specimens, meeting the necessary prerequisite for systematic investigation of hematite photoanodes.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Lewis, N.S. and Nocera, D.G.: Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. U. S. A. 103, 1572915735 (2006).CrossRefGoogle ScholarPubMed
Barber, J. and Tran, P.D.: From natural to artificial photosynthesis. J. R. Soc., Interface 10, 20120984 (2013).CrossRefGoogle ScholarPubMed
Gratzel, M.: Photoelectrochemical cells. Nature 414, 338344 (2001).CrossRefGoogle ScholarPubMed
Walter, M.G., Warren, E.L., McKone, J.R., Boettcher, S.W., Mi, Q., Santori, E.A., and Lewis, N.S.: Solar water splitting cells. Chem. Rev. 110, 64466473 (2010).CrossRefGoogle ScholarPubMed
Olah, G.A.: Beyond oil and gas: The methanol economy. Angew. Chem., Int. Ed. 44, 26362639 (2005).CrossRefGoogle ScholarPubMed
Wang, W., Wang, S., Ma, X., and Gong, J.: Recent advances in catalytic hydrogenation of carbon dioxide. Chem. Soc. Rev. 40, 37033727 (2011).CrossRefGoogle ScholarPubMed
Sivula, K., Le Formal, F., and Grätzel, M.: Solar water splitting: Progress using hematite (α-Fe2O3) photoelectrodes. ChemSusChem 4, 432449 (2011).CrossRefGoogle Scholar
Lin, Y., Yuan, G., Sheehan, S., Zhou, S., and Wang, D.: Hematite-based solar water splitting: Challenges and opportunities. Energy Environ. Sci 4, 48624869 (2011).CrossRefGoogle Scholar
Katz, M.J., Riha, S.C., Jeong, N.C., Martinson, A.B.F., Farha, O.K., and Hupp, J.T.: Toward solar fuels: Water splitting with sunlight and “rust”? Coord. Chem. Rev. 256, 25212529 (2012).CrossRefGoogle Scholar
Bora, D.K., Braun, A., and Constable, E.C.: “In rust we trust”. Hematite—The prospective inorganic backbone for artificial photosynthesis. Energy Environ. Sci. 6, 407425 (2013).CrossRefGoogle Scholar
Young, K.M.H., Klahr, B.M., Zandi, O., and Hamann, T.W.: Photocatalytic water oxidation with hematite electrodes. Catal. Sci. Technol. 3, 16601671 (2013).CrossRefGoogle Scholar
Smith, R.D.L., Prévot, M.S., Fagan, R.D., Zhang, Z., Sedach, P.A., Siu, M.K.J., Trudel, S., and Berlinguette, C.P.: Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis. Science 340, 6063 (2013).CrossRefGoogle ScholarPubMed
Prévot, M.S. and Sivula, K.: Photoelectrochemical tandem cells for solar water splitting. J. Phys. Chem. C 117, 1787917893 (2013).CrossRefGoogle Scholar
Morin, F.J.: Electrical properties of α-Fe2O3 . Phys. Rev. 93, 11951199 (1954).CrossRefGoogle Scholar
Dotan, H., Kfir, O., Sharlin, E., Blank, O., Gross, M., Dumchin, I., Ankonina, G., and Rothschild, A.: Resonant light trapping in ultrathin films for water splitting. Nat. Mater. 12, 158164 (2013).CrossRefGoogle ScholarPubMed
Warren, S.C., Voïtchovsky, K., Dotan, H., Leroy, C.M., Cornuz, M., Stellacci, F., Hébert, C., Rothschild, A., and Grätzel, M.: Identifying champion nanostructures for solar water-splitting. Nat. Mater. 12, 842849 (2013).CrossRefGoogle ScholarPubMed
Kim, J.Y., Magesh, G., Youn, D.H., Jang, J-W., Kubota, J., Domen, K., and Lee, J.S.: Single-crystalline, wormlike hematite photoanodes for efficient solar water splitting. Sci. Rep. 3, 2681 (2013).CrossRefGoogle ScholarPubMed
Hisatomi, T., Dotan, H., Stefik, M., Sivula, K., Rothschild, A., Grätzel, M., and Mathews, N.: Enhancement in the performance of ultrathin hematite photoanode for water splitting by an oxide underlayer. Adv. Mater. 24, 26992702 (2012).CrossRefGoogle ScholarPubMed
Barroso, M., Cowan, A.J., Pendlebury, S.R., Grätzel, M., Klug, D.R., and Durrant, J.R.: The role of cobalt phosphate in enhancing the photocatalytic activity of α-Fe2O3 toward water oxidation. J. Am. Chem. Soc. 133, 1486814871 (2011).CrossRefGoogle ScholarPubMed
Du, C., Yang, X., Mayer, M.T., Hoyt, H., Xie, J., McMahon, G., Bischoping, G., and Wang, D.: Hematite-based water splitting with low turn-on voltages. Angew. Chem., Int. Ed. Engl. 52, 1269212695 (2013).CrossRefGoogle ScholarPubMed
Tilley, S.D., Cornuz, M., Sivula, K., and Grätzel, M.: Light-induced water splitting with hematite: Improved nanostructure and iridium oxide catalysis. Angew. Chem., Int. Ed. Engl. 49, 64056408 (2010).CrossRefGoogle ScholarPubMed
Sivel, V.G.M., Van den Brand, J., Wang, W.R., Mohdadi, H., Tichelaar, F.D., Alkemade, P.F.A., and Zandbergen, H.W.: Application of the dual-beam FIB/SEM to metals research. J. Microsc. 214, 237245 (2004).CrossRefGoogle ScholarPubMed
Reyntjens, S. and Puers, R.A.: A review of focused ion beam applications in microsystem technology. J. Micromech. Microeng. 11, 287 (2001).CrossRefGoogle Scholar
Krol, R.: Chapter 2. Principles of Photoelectrochemical Cells. In Photoelectrochemical Hydrogen Production, van de Krol, R. and Grätzel, M. eds.; Springer: New York, 2012.CrossRefGoogle Scholar
ASTM G173 – 03: Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface (DOI: 10.1520/G0173-03R12). (2012).CrossRefGoogle Scholar