Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-14T19:26:07.877Z Has data issue: false hasContentIssue false

Robust quantum-based interatomic potentials for multiscale modeling in transition metals

Published online by Cambridge University Press:  01 March 2006

John A. Moriarty*
Affiliation:
Lawrence Livermore National Laboratory, University of California, Livermore, California 94551-0808
Lorin X. Benedict
Affiliation:
Lawrence Livermore National Laboratory, University of California, Livermore, California 94551-0808
James N. Glosli
Affiliation:
Lawrence Livermore National Laboratory, University of California, Livermore, California 94551-0808
Randolph Q. Hood
Affiliation:
Lawrence Livermore National Laboratory, University of California, Livermore, California 94551-0808
Daniel A. Orlikowski
Affiliation:
Lawrence Livermore National Laboratory, University of California, Livermore, California 94551-0808
Mehul V. Patel
Affiliation:
Lawrence Livermore National Laboratory, University of California, Livermore, California 94551-0808
Per Söderlind
Affiliation:
Lawrence Livermore National Laboratory, University of California, Livermore, California 94551-0808
Frederick H. Streitz
Affiliation:
Lawrence Livermore National Laboratory, University of California, Livermore, California 94551-0808
Meijie Tang
Affiliation:
Lawrence Livermore National Laboratory, University of California, Livermore, California 94551-0808
Lin H. Yang
Affiliation:
Lawrence Livermore National Laboratory, University of California, Livermore, California 94551-0808
*
a) Address all correspondence to this author. e-mail: moriarty2@llnl.gov This paper was selected as the Outstanding Meeting Paper for the 2005 MRS Spring Meeting Symposium EE Proceedings, Vol. 882E.
Get access

Abstract

First-principles generalized pseudopotential theory (GPT) provides a fundamental basis for transferable multi-ion interatomic potentials in transition metals and alloys within density-functional quantum mechanics. In the central body-centered cubic (bcc) metals, where multi-ion angular forces are important to materials properties, simplified model GPT (MGPT) potentials have been developed based on canonical d bands to allow analytic forms and large-scale atomistic simulations. Robust, advanced-generation MGPT potentials have now been obtained for Ta and Mo and successfully applied to a wide range of structural, thermodynamic, defect, and mechanical properties at both ambient and extreme conditions. Selected applications to multiscale modeling discussed here include dislocation core structure and mobility, atomistically informed dislocation dynamics simulations of plasticity, and thermoelasticity and high-pressure strength modeling. Recent algorithm improvements have provided a more general matrix representation of MGPT beyond canonical bands, allowing improved accuracy and extension to f-electron actinide metals, an order of magnitude increase in computational speed for dynamic simulations, and the development of temperature-dependent potentials.

Type
Outstanding Meeting Papers
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Moriarty, J.A., Vitek, V., Bulatov, V.V., Yip, S.: Atomistic simulations of dislocations and defects. J. Computer-Aided Mater. Design 9, 99 (2002).CrossRefGoogle Scholar
2.Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136, B864 (1964).CrossRefGoogle Scholar
3.Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965).CrossRefGoogle Scholar
4.Moriarty, J.A.: Density-functional formulation of the generalized pseudopotential theory. Phys. Rev. B 16, 2537 (1977).CrossRefGoogle Scholar
5.Moriarty, J.A.: Density-functional formulation of the generalized pseudopotential theory. II. Phys. Rev. B 26, 1754 (1982).CrossRefGoogle Scholar
6.Moriarty, J.A.: Density-functional formulation of the generalized pseudopotential theory. III. Transition-metal interatomic potentials. Phys. Rev. B 38, 3199 (1988).CrossRefGoogle ScholarPubMed
7.Moriarty, J.A.: Analytic representation of multi-ion interatomic potentials in transition metals. Phys. Rev. B 42, 1609 (1990).CrossRefGoogle ScholarPubMed
8.Moriarty, J.A.: Angular forces and melting in bcc transition metals: A case study of molybdenum. Phys. Rev. B 49, 12431 (1994).CrossRefGoogle ScholarPubMed
9.Moriarty, J.A., Widom, M.: First-principles interatomic potentials for transition-metal aluminides: Theory and trends across the 3d series. Phys. Rev. B 56, 7905 (1997).CrossRefGoogle Scholar
10.Moriarty, J.A., Belak, J.F., Rudd, R.E., Söderlind, P., Streitz, F.H., Yang, L.H.: Quantum-based atomistic simulation of materials properties in transition metals. J. Phys.: Condens. Matter 14, 2825 (2002).Google Scholar
11.Moriarty, J.A., Phillips, R.: First-principles interatomic potentials for transition-metal surfaces. Phys. Rev. Lett. 66, 3036 (1991).CrossRefGoogle ScholarPubMed
12.Yang, L.H., Söderlind, P., Moriarty, J.A.: Accurate atomistic simulation of a/2〈111〉 screw dislocations and other defects in bcc tantalum. Philos. Mag. A 81, 1355 (2001).CrossRefGoogle Scholar
13.Moriarty, J.A. (unpublished).Google Scholar
14.Yang, L.H., Söderlind, P., Moriarty, J.A.: Atomistic simulation of pressure-dependent screw dislocation properties in bcc tantalum. Mater. Sci. Eng. A 309–310, 102 (2001).CrossRefGoogle Scholar
15.Yang, L.H., Moriarty, J.A.: Kink-pair mechanisms for a/2〈111〉 screw dislocation motion in bcc tantalum. Mater. Sci. Eng. A 319–321, 124 (2001).CrossRefGoogle Scholar
16.Yang, L.H., Söderlind, P., Tang, M. and Moriarty, J.A. (unpublished).Google Scholar
17.Duesbery, M.S., Vitek, V.: Plastic anisotropy in bcc transition metals. Acta Mater. 46, 1481 (1998).CrossRefGoogle Scholar
18.Rao, S.I., Woodward, C.: Atomistic simulations of (a/2)〈111〉 screw dislocations in bcc Mo using a model generalized pseudopotential theory potential. Philos. Mag. A 81, 1317 (2001).CrossRefGoogle Scholar
19.Frederiksen, S.L., Jacobsen, K.W.: Density-functional theory studies of screw dislocation core structures in bcc metals. Philos. Mag. 83, 365 (2003).CrossRefGoogle Scholar
20.Ismail-Beigi, S., Arias, T.A.: Ab initio study of screw dislocations in Mo and Ta: A new picture of plasticity in bcc transition metals. Phys. Rev. Lett. 84, 1499 (2000).CrossRefGoogle Scholar
21.Woodward, C., Rao, S.I.: Flexible ab initio boundary conditions: Simulating isolated dislocations in bcc Mo and Ta. Phys. Rev. Lett. 88, 216402 (2002).CrossRefGoogle ScholarPubMed
22.Mrovec, M., Nguyen-Manh, D., Pettifor, D.G., Vitek, V.: Bond-order potential for molybdenum: Application to dislocation behavior. Phys. Rev. B 69, 094115 (2004).CrossRefGoogle Scholar
23.Seeger, A., Hollang, L.: The flow-stress asymmetry of ultra-pure molybdenum single crystals. Mater. Trans. JIM 41, 141 (2000).CrossRefGoogle Scholar
24.Hollang, L., Hommel, M., Seeger, A.: The flow stress of ultra-high-purity molybdenum single crystals. Phys. Status Solidi A 160, 329 (1997).3.0.CO;2-O>CrossRefGoogle Scholar
25.Suzuki, T., Kaminura, Y., Kirchner, H.O.K.: Plastic homology of bcc metals. Philos. Mag. A 79, 1629 (1999).CrossRefGoogle Scholar
26.Tang, M., Kubin, L.P., Canova, G.R.: Dislocation mobility and the mechanical response of bcc single crystals: A mesoscopic approach. Acta Mater. 46, 3221 (1998).CrossRefGoogle Scholar
27.Wasserbäch, W.: Plastic deformation and dislocation arrangement of Nb–34at.% Ta alloy single crystals. Philos. Mag. A 53, 335 (1986).CrossRefGoogle Scholar
28.Orlikowski, D.A., Söderlind, P. and Moriarty, J.A. (unpublished).Google Scholar
29.Söderlind, P., Moriarty, J.A.: First-principles theory of Ta up to 10 mbar pressure: Structural and mechanical properties. Phys. Rev. B 57, 10340 (1998).CrossRefGoogle Scholar
30.Walker, E., Bujard, P.: Anomalous temperature behavior of the shear elastic constant C 44 in tantalum. Solid State Commun. 34, 691 (1980).CrossRefGoogle Scholar
31.Katahara, K.W., Manghnani, M.H., Fisher, E.S.: Pressure derivatives of the elastic moduli of bcc Ti–V–Cr, Nb–Mo and Ta–W alloys. J. Phys. F: Metal Phys. 9, 773 (1979).CrossRefGoogle Scholar
32.Cynn, H., Yoo, C-S. Single crystal elastic constants of tantalum to 105 GPa. Lawrence Livermore National Laboratory report UCRL-JC-137930 (2000).Google Scholar
33.Steinberg, D.J., Cochran, S.G., Guinan, J.: A constitutive model for metals applicable at high-strain rate. J. Appl. Phys. 51, 1498 (1980).CrossRefGoogle Scholar
34.McMahan, A.K.: Two-center s-f Slater-Koster integrals. Phys. Rev. B 58, 4293 (1998).CrossRefGoogle Scholar
35.Glosli, J.N. (unpublished).Google Scholar
36.Streitz, F.H., Glosli, J.N., Patel, M.V. Beyond finite-size scaling: Modeling of molten Ta on BlueGene/L. Phys. Rev Lett. (2006, in press).Google Scholar
37.Wong, J., Krisch, M., Farber, D.L., Occelli, F., Schwartz, A.J., Chiang, T-C., Wall, M., Boro, C., Xu, R.: Phonon dispersions of fcc δ-plutonium-gallium by inelastic x-ray scattering. Science 301, 1078 (2003).CrossRefGoogle ScholarPubMed