Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-05T00:01:08.590Z Has data issue: false hasContentIssue false

Role of Bi2O3 in optimizing the dielectric properties of Ba4.5Nd9Ti18O54 based microwave ceramics

Published online by Cambridge University Press:  31 January 2011

Matjaž Valant
Affiliation:
Department of Ceramics, “Jožef Stefan” Institute, University of Ljubljana, Ljubljana, Slovenia
Danilo Suvorov
Affiliation:
Department of Ceramics, “Jožef Stefan” Institute, University of Ljubljana, Ljubljana, Slovenia
Drago Kolar
Affiliation:
Department of Ceramics, “Jožef Stefan” Institute, University of Ljubljana, Ljubljana, Slovenia
Get access

Abstract

Small additions of Bi2O3 or bismuth titanate improve the dielectric properties of Ba4.5Nd9Ti18O54 at microwave frequencies. It was found that Bi3+ can replace Nd3+ up to 15 mol%, the limiting composition of solid solution being Ba4.5(Nd0.85Bi0.15)9Ti18O54. At the solid solution limit the temperature coefficient of resonant frequency attains its minimum value. The modified ceramic is distinguished by high permittivity of 99 and a Q-value of 5500. The temperature coefficient of resonant frequency is low, 15 ppm/K. After exceeding the solid solubility limit, additional Bi2O3 concentrates as a Bi-rich phase at the grain boundaries, causing considerable reduction of the Q-value and an increase of τf.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Varfolomeev, M.B., Mironov, A.S., Kostomarov, S.S., Golubchova, L.A., and Zolotova, T.A., Zh. Neorg. Khim. 33 (4), 1070 (1988).Google Scholar
2.Kolar, D., Gabršček, S., Volavšek, B., Parker, H. S., and Roth, R. S., J. Solid State Chem. 38 (1), 158 (1981).CrossRefGoogle Scholar
3.Kolar, D., Gabršček, S., and Suvorov, D., in Third Euro-ceramics: Properties of Ceramics, edited by Durand, P. and Fernandez, J. F. (Proc. of Third European Ceram. Soc. Conf. 2, Madrid, Spain, 1993), p. 229.Google Scholar
4.Matveeva, R. G., Varfolomeev, M. B., and Il'yuschenko, L.S., Russ. J. Inorg. Chem. 29 (1), 17 (1984).Google Scholar
5.Wakino, K., Minai, K., Tamura, H., J. Am. Ceram. Soc. 67 (4), 278 (1984).CrossRefGoogle Scholar
6.Negas, T., Yeager, G., Bell, S., and Amren, R., in Chemistry of Electronic Ceramic Materials (Proc. of Int. Conf. of Elect. Ceram. Mater., NIST SP 804, Jackson, 1990), p. 21.Google Scholar
7.Kolar, D., Gaberšček, S., Stadler, Z., and Suvorov, D., Ferroelectrics 27, 269 (1980).CrossRefGoogle Scholar
8.Wersing, W., in Electronic Ceramics (Elsevier Sci. Pub., 1991), p. 79.Google Scholar
9.Mudrolubova, L. P., Lisker, K. E., Rotenberg, B. A., Limarii, T. F., and Borsch, A. N., El. Teh., Ser. Radiodetali-Radiokomp. 46 (1), 3 (1982).Google Scholar
10.Durand, J. M. and Boilot, J. P., J. Mater. Sci. Lett., (6), 134 (1987).CrossRefGoogle Scholar
11.Itoh, T. and Rudokas, R. S., IEEE Trans., MTT MTT-25 (1), 52 (1977).Google Scholar
12.Kajfez, D. and Hwan, E.J., IEEE Trans., MTT MTT-32 (7), 666 (1984).Google Scholar
13.Valant, M., Suvorov, D., and Kolar, D., in Electroceramics IV (Proc. of IV Conf. of Electroceram., Aachen, Germany, 1994), Vol. 1, p. 69.Google Scholar