Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-28T14:43:23.188Z Has data issue: false hasContentIssue false

Role of interface properties on the toughness of brittle matrix composites reinforced with ductile fibers

Published online by Cambridge University Press:  31 January 2011

H.E. Dève*
Affiliation:
3M Metal Matrix Composite Group, 3M Center, Bldg. 60-1N-01, St. Paul, Minnesota 55144-1000
S. Schmauder*
Affiliation:
Max-Planck-Institut für Metallforschung, Institüt für Werkstoffwissenschaft, D-7000 Stuttgart 1, Germany
*
a)This work was completed while the authors were with the Materials Department at the University of California, Santa Barbara.
a)This work was completed while the authors were with the Materials Department at the University of California, Santa Barbara.
Get access

Abstract

The incorporation of ductile fibers in brittle matrices can lead to a significant increase in fracture resistance. The increase in toughness that derives from crack bridging is governed by the properties of the matrix/fiber interface and the ductility of the fibers. The current study addresses the role of interface sliding stress on the toughness of brittle composites reinforced with ductile fibers. The debond length is explicitly related to the interface sliding stress and the properties of the fiber. It is then incorporated into a geometrical model to simulate the bridging tractions versus crack opening under condition of continuous debonding. The implications on the effect of interfaces on the resistance curve are discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Evans, A.G., J. Am. Ceram. Soc. 73, 187 (1990).CrossRefGoogle Scholar
2Ashby, M. F., Blunt, F. J., and Bannister, M., Acta Metall. 37, 1847 (1989).CrossRefGoogle Scholar
3Elliott, C.K., Odette, G.R., Lucas, G.E., and Sheckard, J.W., in High-Temperature/High-Performance Composites, edited by Lemkey, F. D., Evans, A. G., Fishman, S. G., and Strife, J. R. (Mater. Res. Soc. Symp. Proc. 120, Pittsburgh, PA, 1988), p. 95.Google Scholar
4Rice, J., Harvard University Report, MECH-116 (1989).Google Scholar
5Fischmeister, H., Schmauder, S., and Sigl, L., Mater. Sci. Eng. A 105/106, 305 (1988).CrossRefGoogle Scholar
6Deve, H. E., Evans, A. G., and Shih, D., Acta Metall. et Mat. 40, 1259 (1992).CrossRefGoogle Scholar
7Evans, A.G. and McMeeking, R. M., Acta Metall. 34, 2435 (1986).CrossRefGoogle Scholar
8Mataga, P., Acta Metall. 37, 3349 (1989).CrossRefGoogle Scholar
9Deve, H.E., Evans, A.G., Odette, G.R., Mehrabian, R., Emiliani, M.L., and Hetch, R. J., Acta Metall. 38, 1491 (1990).CrossRefGoogle Scholar
10Deve, H.E. and Maloney, M.J., Acta Metall. et Mat. 10, 2275 (1991).CrossRefGoogle Scholar
11Deve, H. E., Maloney, M. J., and Weber, C., Mater. Sci. Eng. A152 (1992).Google Scholar
12Hutchinson, J.W. and Jensen, H.M., Mech. Mater. 9, 139 (1990).CrossRefGoogle Scholar
13Evans, A. G., Davis, J., and Zok, F.W., Composite Sci. Technol. 42, 3 (1991).CrossRefGoogle Scholar
14Budiansky, B., Hutchinson, J. W., and Evans, A. G., J. Mech. Phys. Solids 2, 167 (1986).CrossRefGoogle Scholar
15Cao, H.C., Bischoff, E., Sbaizero, O., Riihle, M., Evans, A. G., Marshall, D. B., and Brenan, J. J., J. Am. Ceram. Soc. 73, 1691 (1990).CrossRefGoogle Scholar
16Cox, B. and Marshall, D.B., Acta Metall. Mater. 39, 579 (1991).CrossRefGoogle Scholar
17Bannister, M., Shercliff, H., Bao, G., Zok, F., and Ashby, M. F., to be published.Google Scholar
18Evans, A. G., Bartlett, A., Davis, J. B., Flinn, B. D., Turner, M., and Reimanis, I. E., Scripta Metall et Mat. 25, 1003 (1991).CrossRefGoogle Scholar