Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-28T16:37:13.541Z Has data issue: false hasContentIssue false

The role of microstructure and processing on the proton conducting properties of gadolinium-doped barium cerate

Published online by Cambridge University Press:  31 January 2011

Sossina M. Haile*
Affiliation:
Department of Material Science, California Institute of Technology, Pasadena, California 91125
David L. West
Affiliation:
Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195–2120
John Campbell
Affiliation:
Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195–2120
*
a) Author to whom correspondence should be addressed.
Get access

Abstract

The influence of grain boundary conductivity and microstructure on the electrical properties of BaCe0.85Gd0.15O3–δ have been examined. Grain sizes were varied by sintering at various temperatures. Impedance data were analyzed using the brick layer model, and some new consequences of this model are presented. The specific grain boundary conductivity exhibits an activation energy of ~0.7 eV, and for similar processing routes, is independent of grain size. An isotope effect was observed, indicating that protons (or deuterons) are the mobile species. TEM investigations showed the intergranular regions to be free of any glassy phase that could account for the differences in bulk and grain boundary properties. Single-crystal fibers, grown by a modified float zone process, were notably barium deficient, and exhibited a low conductivity, comparable to that of polycrystalline Ba0.96Ce0.85Gd0.15O3–δ.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Iwahara, H., Esaka, T., Uchida, H., and Maeda, N., Solid State Ionics 3/4, 359 (1981).CrossRefGoogle Scholar
2.Bonanos, N., Solid State Ionics 53–56, 867 (1993).Google Scholar
3.Iwahara, H., Solid State Ionics 28–30, 573 (1988).CrossRefGoogle Scholar
4.Shima, D. and Haile, S., Solid State Ionics 97, 443 (1997).CrossRefGoogle Scholar
5.Kreuer, K-D., Schönherr, E. and Maier, J., in Proc. 14th Risø Intern. Symp. on Materials Science (Risø Natl. Lab., Roskilde, Denmark, 1993).Google Scholar
6.Nowick, A. S. and Du, Y., Solid State Ionics 77, 137 (1995).CrossRefGoogle Scholar
7.Bonanos, N., Steele, B. C. H. and Butler, E. P., in Impedance Spectroscopy, edited by MacDonald, J. R. (Wiley and Sons, New York, 1988), pp. 191238.Google Scholar
8.Nafe, H., Solid State Ionics 13, 255 (1984).Google Scholar
9.Guo, X. and Yuan, R-Z., J. Mater. Sci. Lett. 14, 499 (1995).CrossRefGoogle Scholar
10.Christie, G. M. and van Berkel, F. P. F., Solid State Ionics 83, 17 (1996).CrossRefGoogle Scholar
11.MacDonald, J. R. and Johnson, W. B., in Impedance Spectroscopy, edited by MacDonald, J. R. (Wiley and Sons, New York, 1988), pp. 126.Google Scholar
12.Beekmans, N. M. and Heyne, L., Electrochim. Acta 21, 303 (1976).CrossRefGoogle Scholar
13.van Dijk, T. and Burggraaf, A. J., Phys. Status Solidi 63, 229 (1981).CrossRefGoogle Scholar
14.Aoki, M., Chiang, Y-M., Kosacki, I., Lee, J-R., Tuller, H.-L., and Liu, Y., J. Am. Ceram. Soc. 75, 1169 (1996).CrossRefGoogle Scholar
15.West, D. L., M. S. Thesis, University of Washington, Seattle (1996).Google Scholar
16.de Jonghe, L. C., J. Mater. Sci. 14, 33 (1979).CrossRefGoogle Scholar
17.Adham, K. El. and Hammou, A., Solid State Ionics 9 & 10, 905 (1983).CrossRefGoogle Scholar
18.Verkerk, M. J., Middlehuis, B. J., and Burggraaf, A. J., Solid State Ionics 6, 159 (1982).Google Scholar
19.Maxwell, J. C., A. Treatise on Electricity and Magnetism, 2nd ed. (Clarendon Press, Oxford, England, 1881).Google Scholar
20.Baurle, J. E., J. Phys. Chem. Solids 30, 2657 (1969).Google Scholar
21.Schouler, E., Giroud, G., and Kleitz, M., J. Chim. Phys. et Physicochim. Biol. 70, 1309 (1973).CrossRefGoogle Scholar
22.Wagner, K. W., in Arkiv für Electrotechnik, edited by Schering, H. (Springer-Verlag, Berlin, Germany, 1914).Google Scholar
23.West, D., Haile, S. M., and Feigelson, R. S., in Materials for Electrochemical Energy Storage and Conversion—Batteries, Capacitors and Fuel Cells, edited by Doughty, D. H., Brijesh Vyas, Tsutomu Takamura, and James R. Huff (Mater. Res. Soc. Symp. Proc. 393, Pittsburgh, PA, 1995) p. 31.Google Scholar
24.Feigelson, R. S., Gazit, D., Fork, D. K., and Geballe, T. H., Science 242, 1642 (1988).Google Scholar
25.Armstrong, J. T., Microbeam Analysis 4, 177 (1995).Google Scholar
26.Boukamp, B. B., Equivalent Circuit, University of Twente, The Netherlands (1988).Google Scholar
27. Micro-Cellref, from Materials Data, Inc., Livermore, CA (1992).Google Scholar
28.Knight, K. S. and Bonanos, N., J. Mat. Chem. 4, 899 (1994).CrossRefGoogle Scholar
29.Kingery, W. D., Bowen, H. K., and Uhlman, D. R., Introduction to Ceramics, 2nd ed. (John Wiley & Sons, New York, 1976), pp. 469490.Google Scholar
30.Shima, D. and Haile, S. M., unpublished results.Google Scholar
31.Krug, F., Schober, T., Paul, R., and Springer, T., Solid State Ionics 77, 185 (1995).CrossRefGoogle Scholar
32.Luyten, J., De Schutter, F., Schram, J., and Schoonman, J., Solid State Ionics 46, 117 (1991).CrossRefGoogle Scholar
33.Flint, S. D. and Glade, R. C. T., Solid State Ionics 77, 215 (1995).CrossRefGoogle Scholar
34.Stevenson, D. A., Jiang, N., Buchanan, R. M., and Henn, F. E. G., Solid State Ionics 62, 279 (1993).CrossRefGoogle Scholar
35.Scherban, T., Baikov, Yu.M., and Shalkova, E. K., Solid State Ionics 66, 159 (1993).Google Scholar
36.West, D. and Haile, S. M., unpublished results.Google Scholar
37.Kreuer, K-D., Chem. Mater. 8, 610 (1996).CrossRefGoogle Scholar