Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-05T00:07:34.810Z Has data issue: false hasContentIssue false

The role of transesterification in the multistep “prehydrolysis” sol/gel synthesis of aluminum-rich aluminosilicate gels

Published online by Cambridge University Press:  31 January 2011

G. A. Pozarnsky
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455–0132
A. V. McCormick*
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455–0132
*
b)Author to whom correspondence should be addressed.
Get access

Abstract

Using a prehydrolysis technique, transparent gels with very high aluminum content can be achieved with the use of isopropanol. Here 13C, 27Al, 29Si and 17O NMR at various stages of preparation show that when the aluminum added exceeds the number that silanols can fully protect, the excess aluminum alkoxide groups readily undergo transesterification with isopropanol. The aluminum isopropoxide (Al–OPri) groups thus formed are shown to be sufficiently stable that attack by water is impeded, thus allowing the remaining silicon alkoxide groups to hydrolyze and condense to form a homogeneous gel.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Reese, M., Sanchez, J., and McCormick, A. V., in Synthesis and Processing of Ceramics: Scientific Issues, edited by Rhine, W. E., Shaw, T. M., Gottschall, R. J., and Chen, Y. (Mater. Res. Soc. Symp. Proc. 249, Pittsburgh, PA, 1992), p. 69.Google Scholar
2.Pozarnsky, G. A. and McCormick, A. V., J. Non-Cryst. Solids 190 (3), 212 (1995).CrossRefGoogle Scholar
3.Pozarnsky, G. A., Westenberg, E., and McCormick, A. V., J. Sol-Gel Science and Technology 3, 57 (1994).CrossRefGoogle Scholar
4.Iler, R. K., The Chemistry of Silica (New York, 1979).Google Scholar
5.Thomas, C. L., Ind. Eng. Chem. 4 (1), 2564 (1949).CrossRefGoogle Scholar
6.Carturan, G., J. Non-Cryst. Solids 29 (41), 954 (1978).CrossRefGoogle Scholar
7.Brinker, C. J. and Scherer, G. W., Sol-Gel Science (Academic Press, New York, 1990).Google Scholar
8.Pouxviel, J. C. and Boilot, J. P., Ultrastructure Processing of Advanced Ceramics, edited by MacKenzie, J. D. and Ulrich, D. R. (Wiley, New York, 1987), p. 197.Google Scholar
9.Yoldas, B., J. Mater. Sci. 11 (4), 1822 (1979).Google Scholar
10.Yoldas, B., J. Non-Cryst. Solids 63, 150 (1984).CrossRefGoogle Scholar
11.Jonas, J., Irwin, A. D., and Holmgren, J. S., Ultrastructure Processing of Advanced Ceramics, edited by MacKenzie, J. D. and Ulrich, D. R. (Wiley, New York, 1987), p. 303.Google Scholar
12.Jonas, J., Irwin, A. D., and Holmgren, J. S., J. Mater. Sci. 23, 2908 (1988).Google Scholar
13.Fahrenholtz, W. G., Hetala, S. L., Smith, D. M., Hurd, A. J., Brinker, C. J., and Earl, W. L. in Better Ceramics Through Chemistry IV, edited by Zelinski, B. J. J., Brinker, C. J., Clark, D. E., and Ulrich, D. R. (Mater. Res. Soc. Symp. Proc. 180, Pittsburgh, PA, 1990), p. 229.Google Scholar
14.Yoldas, B., J. Mater. Sci. 8 (3), 489 (1978).Google Scholar
15.Krol, D. M. and van Lierop, J. G., J. Non-Cryst. Solids 63, 131 (1984).CrossRefGoogle Scholar
16.Dire, S. and Babonneau, F., J. Non-Cryst. Solids 167, 29 (1994).CrossRefGoogle Scholar
17.Pouxviel, J. C., Boilot, J. P., Beloeil, J. C., and Lallemand, J. Y., J. Non-Cryst. Solids 89, 345 (1987).CrossRefGoogle Scholar
18.Akitt, J. W., Prog. NMR Spec. 21, 1 (1989).CrossRefGoogle Scholar
19.Lippmaa, E., Samoson, A., and Magi, M., J. Am. Chem. Soc. 108, 1730 (1989).CrossRefGoogle Scholar
20.Mueller, D., Hoebbel, D., and Gessner, W., Chem. Phys. Lett. 84 (1), 25 (1981).CrossRefGoogle Scholar
21.Harvey, G. and Glasser, L. S. D., Zeolite Synthesis, ACS, Symposium Series, edited by Occelli, M. L. and Robson, H. E. (1988), Vol. 398, p. 49.CrossRefGoogle Scholar
22.Walter, T. H., Turner, G. L., and Oldfield, E., J. Magn. Res. 76, 106 (1988).Google Scholar
23.Walter, T. H. and Oldfield, E., J. Phys. Chem. 93, 6744 (1989).CrossRefGoogle Scholar
24.Timken, H. Y. C., Schramm, S.E., Kirkpatrick, R.J., and Oldfield, E., J. Phys. Chem. 91, 1054 (1987).CrossRefGoogle Scholar
25.Schramm, S. and Oldfield, E., J. Am. Chem. Soc. 106, 2502 (1984).CrossRefGoogle Scholar
26.Timken, H. Y. C., Turner, G. L., Gilson, J.P., Welsh, L. B., and Oldfield, E., J. Am. Chem. Soc. 108, 7231 (1986).CrossRefGoogle Scholar
27.Turner, C. W. and Franklin, K. J., J. Non-Cryst. Solids 91, 402 (1987).CrossRefGoogle Scholar
28.Dirken, P. J., Smith, M. E., and Whitfield, H. J., J. Phys. Chem. 99, 345 (1995).CrossRefGoogle Scholar
29.Bradley, D., Metal Alkoxides (Wiley, New York, 1978).Google Scholar
30.Livage, J., Henry, M., and Sanchez, C., Prog. Solid State Chem. 18 (4), 259 (1988).CrossRefGoogle Scholar
31.Henry, M., Jolivet, J. P., and Livage, J., Structure and Bonding 77, 154 (1991).Google Scholar
32.Jones, K., Davies, T. J., Emblem, H. G., and Parkes, P. in Better Ceramics Through Chemistry II, edited by Brinker, C. J., Clark, D. E., and Ulrich, D. R. (Mater. Res. Soc. Symp. Proc. 73, Pittsburgh, PA, 1986), p. 111.Google Scholar
33.Mehrotra, R. C. in Better Ceramics Through Chemistry III, edited by Brinker, C. J., Clark, D. E., and Ulrich, D. R. (Mater. Res. Soc. Symp. Proc. 121, Pittsburgh, PA, 1988), p. 81.Google Scholar
34.Li, P., Ferfuson, B. A., and Francis, L. F., J. Mater. Sci. 30, 4076 (1995).CrossRefGoogle Scholar