Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-14T19:16:00.362Z Has data issue: false hasContentIssue false

Room-temperature deformation in a Laves phase

Published online by Cambridge University Press:  31 January 2011

J. D. Livingston
Affiliation:
General Electric Company, Corporate Research and Development, Schenectady, New York 12301
E. L. Hall
Affiliation:
General Electric Company, Corporate Research and Development, Schenectady, New York 12301
Get access

Abstract

Transmission electron microscopy of two-phase V-Hf-Nb and V-Hf-Nb-Ti alloys plastically deformed at room temperature shows that {111} (112) twinning is a major deformation mode for the HfV2-based Laves phase. Bands of concentrated shear are also observed. Possible approaches to enhance low-temperature deformability in other Laves phases are discussed.

Type
Materials Communications
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Moran, J. B., Trans. TMS-AIME 233, 1473 (1965).Google Scholar
2 Müller, Th. and Paufler, P., Phys. Stat. Sol. (a) 40, 471 (1977).Google Scholar
3 Livingston, J. D., Hall, E. L., and Koch, E. F., in High-Temperature Ordered Intermetallic Alloys, edited by Koch, C. C., Liu, C.T., Stoloff, N. S., and Taub, A. I., MRS Symp. Proc. (Materials Research Soc, Pittsburgh, PA, 1989), Vol. 133, p. 243.Google Scholar
4 Inoue, K., Kuroda, T., and Tachikawa, K., Nucl, J..Mater.133134, 815 (1985).Google Scholar
5 Inoue, K. and Tachikawa, K., IEEE Trans. Magn. MAG-13, 840 (1977).Google Scholar
6 Inoue, K., Kuroda, T., and Tachikawa, K., IEEE Trans. Magn. MAG-15, 635 (1979).Google Scholar
7 Paufler, P. and Schulze, G. E. R., Kristall und Technik 2,231 (1967).Google Scholar
8 Finlayson, T.R., Lanston, E. J., Simpson, M.A., Gibbs, E. E., and Smith, T.F., J.Phys. F 8, 2269 (1978).Google Scholar
9 Balankin, A.S. and Skorov, D.M., Sov. Phys. Solid State 24, 681 (1982).Google Scholar
10 Balankin, A.S., Bychkov, Yu. F., and Yakovlev, Ye. I., Phys. Met. Metall. 56, 119 (1983).Google Scholar
11 Lawson, A. C. and Zachariasen, W. H., Phys. Lett. 38A, 1 (1972).Google Scholar
12 Venables, J. A., in Deformation Twinning, edited by Reed-Hill, R. E., Hirth, J. P., and Rogers, H. C. (Gordon and Breach, New York, 1964), p. 77.Google Scholar
13 Allen, C.W., Delavignette, P., and Amelinckx, S., Phys. Stat. Sol. (a) 9, 237 (1972).CrossRefGoogle Scholar
14 Kramer, U. and Schulze, G. E. R., Kristall und Technik 3, 417 (1968).Google Scholar
15 Amelinckx, S., in Dislocations in Solids, edited by Nabarro, F. R. N. (North-Holland, Amsterdam, 1979), Vol. 2, p. 67.Google Scholar
16 Kronberg, M. L., Acta Metall. 5, 507 (1957); 9, 970 (1961); J. Nucl. Mater. 1, 85 (1959).Google Scholar
17 Sauthoff, G., Metallkd, Z.. 80, 337 (1989).Google Scholar