Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-19T15:43:47.807Z Has data issue: false hasContentIssue false

Room-temperature synthesis of submicron platinum and palladium powders in glycols

Published online by Cambridge University Press:  31 January 2011

K. Tekaia-Elhsissen
Affiliation:
Université de Picardie Jules Verne, Laboratoire de Réactivité et de Chimie des Solides, UPRES-A 6007, 80039 Amiens, France
F. Bonet
Affiliation:
Université de Picardie Jules Verne, Laboratoire de Réactivité et de Chimie des Solides, UPRES-A 6007, 80039 Amiens, France
S. Grugeon
Affiliation:
Université de Picardie Jules Verne, Laboratoire de Réactivité et de Chimie des Solides, UPRES-A 6007, 80039 Amiens, France
S. Lambert
Affiliation:
Université de Picardie Jules Verne, Laboratoire de Réactivité et de Chimie des Solides, UPRES-A 6007, 80039 Amiens, France
R. Herrera-Urbina
Affiliation:
Université de Picardie Jules Verne, Laboratoire de Réactivité et de Chimie des Solides, UPRES-A 6007, 80039 Amiens, France
Get access

Abstract

Platinum and palladium powders with average particle sizes in the submicron range have been synthesized at room temperature by hydrazine reduction of and , respectively, in glycols. Platinum powders contain spherical particles with a bimodal size distribution. Palladium powders also contain spherical particles, but the size distribution is narrow. The effect of both ammonia and hydrazine concentration on the size distribution and average size of palladium particles was investigated.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Yang, K.C., in Powder Metallurgy, Metals Handbook, 9th ed. Vol. 7 (ASM, Metals Park, OH, 1984).Google Scholar
2.Davey, N.M. and Seymour, R.J., Platinum Met. Rev. 29(1), 2 (1985)CrossRefGoogle Scholar
3.Warnecke, H., in Precious Metals 1992 (1992) pp. 283291.Google Scholar
4. Platinum Met. Rev. 39(3), 112116 (1995).CrossRefGoogle Scholar
5.Van Rheenen, P.R., McKelvy, M.J., and Glaunsinger, W.S., J. Solid State Chem. 67, 151 (1987).CrossRefGoogle Scholar
6.Nakao, Y. and Kaeriyama, K., J. Colloid Interface Sci. 110(1), 82 (1986).CrossRefGoogle Scholar
7.Ayyappan, S., Srinivasa Gopalan, R., Subbanna, G.N., and Rao, C.N.R, J. Mater. Res. 12, 398 (1997).CrossRefGoogle Scholar
8.Teranishi, T. and Miyake, M., Chem. Mater. 10, 594 (1998).CrossRefGoogle Scholar
9.Diodati, P., Gianninni, G., Mirri, L., Petrillo, C., and Sacchetti, F., Ultrason. Sonochem. 4, 45 (1997).CrossRefGoogle Scholar
10.Kratohvil, S. and Matijevic, E., J. Mater. Res. 9, 2404 (1994).CrossRefGoogle Scholar
11.Ducamp-Sanguesa, C., Herrera-Urbina, R., and Figlarz, M., Solid State Ionics 63–65, 25 (1993).CrossRefGoogle Scholar
12.Clint, J.H., Collins, I.R., Williams, J.A., Robinson, B.H., Towey, T.F., Cajean, P., and Khan-Lodhi, A., Faraday Discuss. 95, 219 (1993).CrossRefGoogle Scholar
13.Butler, J.N., Ionic Equilibrium—A Mathematical Approach (Addison-Wesley, Reading, MA, 1964).Google Scholar
14.Schiessl, H.W., Aldrichim. Acta 13, 33 (1980).Google Scholar
15.Fievet, F., Lagier, J.P., Blin, B., Beaudoin, B., and Figlarz, M., Solid State Ionics 32/33, 198 (1989).CrossRefGoogle Scholar