Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-02T21:56:10.532Z Has data issue: false hasContentIssue false

Roughness development in electrodeposited ultrathin cobalt and nickel layers

Published online by Cambridge University Press:  31 January 2011

Robert F. Renner
Affiliation:
Department of Chemical Engineering, Washington State University, Pullman, Washington 99164-2710
KNona C. Liddell
Affiliation:
Department of Chemical Engineering, Washington State University, Pullman, Washington 99164-2710
Get access

Abstract

For both Co and Ni, a series of electrodeposited films of varying thickness (2–10 nm) was grown under otherwise identical conditions using potentiostatic control. The substrates were pieces of Si wafer onto which a Cu basal layer had been thermally evaporated. Contact mode atomic force microscopy was used to measure both the root-mean-square peak height (nm) and the areal peak density (μm−2) of each film. Root-mean-square (rms) peak heights for Co initially increase with film thickness and then plateau at a layer thickness of 3 nm. For Ni, the rms peak heights increase almost linearly for layer thicknesses less than 11 nm, reaching a value of 6 nm. Peak density shows the opposite trend, decreasing with layer thickness before reaching an approximately constant value for both metals at a film thickness of 4 nm. The atomic force microscopy data indicate that Ni and Co have different deposition mechanisms. A Co film initially nucleates rapidly; then the nucleation phase is followed by multinuclear, multilayer growth. Ni deposits also have initial rapid nucleation, but the dominant growth mode is primarily vertical, with increasing peak heights but no change in peak density. Increased peak density is linearly correlated with decreased peak height for the thinnest films in both systems.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Baibich, M.N., Broto, J.M., Fert, A., Nguyen Van Dau, F., Petroff, F., Etienne, P., Creuzet, G., Friederich, A., and Chazelas, J., Phys. Rev. Lett. 61, 2472 (1988).Google Scholar
2.Binasch, G., Grunberg, P., Saurenbach, F., and Zinn, W., Phys. Rev. B 39, 4828 (1989).Google Scholar
3.Petroff, F., Barthelemy, A., Hamzic, A., Fert, A., Etienne, P., Lequien, S., and Creuzet, G., J. Magn. Magn. Mater. 93, 95 (1991).CrossRefGoogle Scholar
4.Petroff, F., Barthelemy, A., Mosca, D.H., Lottis, D.K., Fert, A., Schroeder, P.A., Pratt, W.P., Lolee, R., and Lequien, S., Phys. Rev. B 44, 5355 (1991).Google Scholar
5.Dieny, B., Humbert, P., Speriosu, V.S., Metin, S., Gurney, B.A., Baumoart, P., and Lefakis, H., Phys. Rev. B 45, 806 (1992).Google Scholar
6.Fullerton, E.E., Kelly, D.M., Guimpel, J., Schuller, I.K., and Bruyneseraede, Y., Phys. Rev. Lett. 68, 859 (1992).CrossRefGoogle Scholar
7.Joo, S., Obi, Y., Takanashi, K., and Fujimori, H., J. Magn. Magn. Mater. 104–107, 1753 (1992).Google Scholar
8.Takanashi, K., Obi, Y., Mitani, Y., and Fujimori, H., J. Phys. Soc. Jpn. 61, 1169 (1992).Google Scholar
9.Rensing, N., Payne, A.P., and Clemens, B.M., J. Magn. Magn. Mater. 121, 436 (1993).Google Scholar
10.Belien, P., Schad, R., Potter, C.D., Potter, G., Verbanck, G., Moshchalkov, V.V., and Bruyseraede, Y., Phys. Rev. B 50, 9957 (1994).Google Scholar
11.Ueda, H., Kitakami, O., Shimada, Y., Goto, Y., and Yamamoto, M., Jpn J. Appl. Phys. 33, 6173 (1994).Google Scholar
12.Suzuki, M. and Taga, Y., Phys. Rev. B 52, 361 (1995).Google Scholar
13.Schad, R., Barnas, J., Belien, P., Verbanck, G., Potter, C.D., Fischer, H., Lefebvre, S., Bessiere, M., Moshchalkov, V.V., and Bruynseraede, Y., J. Magn. Magn. Mater. 156, 341 (1996).Google Scholar
14.Wawro, A., Baczewski, L.T., Kalinowski, R., Aleszkiewicz, M., and Rauluszkiewicz, J., Thin Solid Films 206, 326 (1997).Google Scholar
15.Youssef, J.B., Bouziane, K., Koshikina, O., Gall, H.L., Harfaoui, M.E., Yamani, M.E., Desvignes, J.M., and Fert, A., J. Magn. Magn. Mater. 165, 288 (1997).Google Scholar
16.Tench, D.M. and White, J.T., Metall. Trans. A 15A, 2039 (1984).CrossRefGoogle Scholar
17.Tench, D.M. and White, J.T., J. Electrochem. Soc. 137, 3061 (1990).Google Scholar
18.Tench, D.M. and White, J.T., J. Electrochem. Soc. 138, 3757 (1991).Google Scholar
19.Bennett, L.H., Lashmore, D.S., Dariel, M.P., Kaufman, M.J., Rubinstein, M., Lubitz, P., Zadok, O., and Yahalom, J., J. Magn. Magn. Mater. 67, 239 (1987).Google Scholar
20.Bennett, L.H., Swartzendruber, L.J., Lashmore, D.S., Oberle, R., Atzmony, U., Dariel, M.P., and Watson, R.E., Phys. Rev. B 40, 4633 (1989).Google Scholar
21.Dariel, M., Bennett, L.H., Lashmore, D.S., Lubitz, P., Rubinstein, M., Lechter, W.L., and Harford, M.Z., J. Appl. Phys. 61, 4067 (1987).Google Scholar
22.Despic, A.R. and Jovic, V.D., J. Electrochem. Soc. 134, 3004 (1987).Google Scholar
23.Yahalom, J. and Zadok, O., J. Mater. Sci. 22, 499 (1987).Google Scholar
24.Lashmore, D.S. and Dariel, M.P., J. Electrochem. Soc. 135, 1218 (1988).Google Scholar
25.Despic, A.R., Jovic, V.D., and Spaic, S., J. Electrochem. Soc. 136, 1651 (1989).CrossRefGoogle Scholar
26.Menezes, S. and Anderson, D.P., J. Electrochem. Soc. 137, 440 (1990).Google Scholar
27.McMichael, R.D., Atzmony, U., Beauchamp, C., Bennett, L.H., Swartzendruber, L.J., Lashmore, D.S., and Romankiw, L.T., J. Magn. Magn. Mater. 113, 149 (1992).Google Scholar
28.Simunovich, D., Schlesinger, M., and Snyder, D.D., J. Electrochem. Soc. 141, L10 (1994).Google Scholar
29.Bird, K.D. and Schlesinger, M., J. Electrochem. Soc. 142, L65 (1995).CrossRefGoogle Scholar
30.Celis, J.P., Van Acker, K., Callewaert, K., and Van Houtte, P., J. Electrochem. Soc. 142, 70 (1995).Google Scholar
31.Lenczowski, S.K.J, Schonenberger, C., Gijs, M.A.M, and de Jonge, W.J.M., J. Magn. Magn. Mater. 148, 455 (1995).Google Scholar
32.Moffat, T.P., J. Electrochem. Soc. 142, 3767 (1995).Google Scholar
33.Bonhote, C. and Landolt, D., Electrochim. Acta 42, 2407 (1997).Google Scholar
34.Lashmore, D.S. and Hua, S.Z., in Polycrystalline Thin Films: Structure, Texture, Properties and Applications II, edited by Frost, H.J., Parker, M.A., Ross, C.A., and Holm, E.A. (Mater. Res. Soc. Symp. Proc. 403, Pittsburgh, PA, 1996), p. 161.Google Scholar
35.Ueda, Y., Hataya, N., and Zaman, H., J. Magn. Magn. Mater. 156, 350 (1996).Google Scholar
36.Jyoko, Y., Kashiwabara, S., and Hayashi, Y., J. Electrochem. Soc. 144, L5 (1997).Google Scholar
37.Nallet, P., Chassaing, E., Walls, M.G., and Hÿtch, M.J., J. Appl. Phys. 79, 6884 (1996).Google Scholar
38.Schroder, D.K., Semiconductor Material and Device Characterization (John Wiley and Sons, Inc., New York, 1990).Google Scholar
39.Dou, B., M.S. Thesis, Washington State University (1998).Google Scholar
40.Westra, K.L. and Thomson, D.J., J. Vac. Sci. Technol. B13, 334 (1995).Google Scholar
41.Giannakouros, M. (Digital Instruments, 1998, personal communication).Google Scholar