Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-01T07:00:10.709Z Has data issue: false hasContentIssue false

Scale effects for strength, ductility, and toughness in “brittle” materials

Published online by Cambridge University Press:  31 January 2011

W.W. Gerberich*
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455
J. Michler
Affiliation:
Laboratory for Mechanics of Materials and Nanostructures, EMPA—Swiss Federal Laboratories for Materials Testing and Research, 3602, Thun, Switzerland
W.M. Mook
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455; and Laboratory for Mechanics of Materials and Nanostructures, EMPA—Swiss Federal Laboratories for Materials Testing and Research, 3602, Thun, Switzerland
R. Ghisleni
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455
F. Östlund
Affiliation:
Laboratory for Mechanics of Materials and Nanostructures, EMPA—Swiss Federal Laboratories for Materials Testing and Research, 3602, Thun, Switzerland
D.D. Stauffer
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455
R. Ballarini
Affiliation:
Department of Civil Engineering, University of Minnesota, Minneapolis, Minnesota 55455
*
a) Address all correspondence to this author. e-mail: wgerb@umn.edu
Get access

Abstract

Decreasing scales effectively increase nearly all important mechanical properties of at least some “brittle” materials below 100 nm. With an emphasis on silicon nanopillars, nanowires, and nanospheres, it is shown that strength, ductility, and toughness all increase roughly with the inverse radius of the appropriate dimension. This is shown experimentally as well as on a mechanistic basis using a proposed dislocation shielding model. Theoretically, this collects a reasonable array of semiconductors and ceramics onto the same field using fundamental physical parameters. This gives proportionality between fracture toughness and the other mechanical properties. Additionally, this leads to a fundamental concept of work per unit fracture area, which predicts the critical event for brittle fracture. In semibrittle materials such as silicon, this can occur at room temperature when the scale is sufficiently small. When the local stress associated with dislocation nucleation increases to that sufficient to break bonds, an instability occurs resulting in fracture.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Nix, W.D. and Gao, H.: Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids 46, 411 (1998).CrossRefGoogle Scholar
2.Arzt, E.: Overview No. 130—Size effects in materials due to microstructural and dimensional constraints: A comparative review. Acta Mater. 46, 5611 (1998).CrossRefGoogle Scholar
3.Corcoran, S.G., Colton, R.J., Lilleodden, E.T., and Gerberich, W.W.: Anomalous plastic deformation at surfaces: Nanoindentation of gold single crystals. Phys. Rev. B: Condens. Matter 55, 16057 (1997).CrossRefGoogle Scholar
4.Hemker, K.J. and Sharpe, W.W. Jr: Microscale characterization of mechanical properties. Annu. Rev. Mater. Sci. 37, 93 (2007).CrossRefGoogle Scholar
5.Gouldstone, A., Chollacoop, N., Dao, M., Li, J., Minor, A., and Shen, Y-L.: Indentation across size scales and disciplines: Recent developments in experimentation and modeling. Acta Mater. 55, 4015 (2007).CrossRefGoogle Scholar
6.Durst, K., Backer, B., Franke, O., and Goker, M.: Indentation size effect in metallic materials: Modeling strength from pop-in to macroscopic hardness using geometrically necessary dislocations. Acta Mater. 54, 2547 (2006).CrossRefGoogle Scholar
7.Tsuchiya, T., Tabata, O., Sakata, J., and Taga, Y.: Specimen-size effect on tensile strength of surface-micromachined polycrystal-line silicon thin film. J. Microelectromech. Syst. 1, 106 (1998).CrossRefGoogle Scholar
8.Koch, C.C., Ovid'ko, I.A., Seal, S., and Veprek, S.: Structural Nanocrystalline Materials (Cambridge University Press, Cambridge, UK, 2007), Ch. 4.CrossRefGoogle Scholar
9.vanSwygenhoven, H. and Weertman, J.R.: Deformation in nanocrystalline metals. Mater. Today 9, 24 (2006).CrossRefGoogle Scholar
10.Gerberich, W.W., Tymiak, N.I., Grunlan, J.C., Horstemeyer, M.F., and Baskes, M.I.: Interpretations of indentation size effects. J. Appl. Mech. 69, 433 (2002).CrossRefGoogle Scholar
11.Gerberich, W.W., Stauffer, D.D., Beaber, A.R., and Mook, W.M.: Connectivity between plasticity and brittle fracture: An overview from nanoindentation studies. Proc. J. Mech. E 222, 1 (2009).Google Scholar
12.Greer, J.R. and Nix, W.D.: Size dependence of mechanical properties of gold at the submicron scale. Appl. Phys. A 80, 1625 (2005).CrossRefGoogle Scholar
13.Uchic, M.D., Dimiduk, D.N., Florando, J.N., and Nix, W.D.: Sample dimensions influence strength and crystal plasticity. Science 305, 986 (2004).CrossRefGoogle ScholarPubMed
14.Kopycinska-Mueller, M., Geiss, R.H., and Hurley, D.C.: Size-related plasticity effects in AFM silicon contilever tips, in Mechanics of Nanoscale Materials and Devices, edited by Msra, A., Sullivan, J.P., Huang, H., Lu, K., and Asif, S. (Mater. Res. Soc. Symp. Proc. 924E, Warrendale, PA, 2006), 0924–Z03–02.Google Scholar
15.Moser, B., Wasmer, K., Barbieri, L., and Michler, J.: Strength and fracture of Si micropillars: A new scanning electron microscopy-based micro-compression test. J. Mater. Res. 22, 1004 (2007).CrossRefGoogle Scholar
16.Mook, W.M., Lund, M.S., Leighton, C., and Gerberich, W.W.: Flow stresses and activation volumes for highly deformed nanoposts. Mater. Sci. Eng., A 493, 12 (2008).CrossRefGoogle Scholar
17.Han, X., Zheng, K., Zhang, Y.F., Zhang, X., Zhang, Z., and Wang, Z.L.: Low temperature in situ large-strain plasticity of silicon nanowires. Adv. Mater. 19, 2112 (2007).CrossRefGoogle Scholar
18.Ostlund, F., Rzepiejewska-Malyska, K., Leifer, K., and Michler, J.: Brittle-to-ductile transition in uniaxial compression of silicon pillars at room temperature. Adv. Mater. (2009 submitted).CrossRefGoogle Scholar
19.Kim, T.Y., Han, S.S., and Lee, H.M.: Nanomechanical behavior of β-SiC nanowire in tension: Molecular dynamic simulations. Mater. Trans. 45, 1442 (2004).CrossRefGoogle Scholar
20.Han, X.D., Zhang, Y.F., Zheng, K., Zhang, X.N., Hao, Y., Guo, X.Y., Yuan, J., and Wang, Z.L.: Low-temperature in situ large strain plasticity of ceramic SiC nanowires and its atomic-scale mechanism. Nano Lett. 7, 452 (2007).CrossRefGoogle ScholarPubMed
21.Kang, K. and Cai, W.: Brittle and ductile fracture of semiconductor nanowires. Molecular dynamics simulations. Philos. Mag. 87, 2169 (2007).CrossRefGoogle Scholar
22.Gumbsch, P., Taeri-Baghbadruni, S., Brunner, D., Sigle, W., and Ruhle, M.: Plasticity and an inverse brittle-to-ductile transition in strontium titanate. Phys. Rev. Lett. 87, 085505 (2001).CrossRefGoogle Scholar
23.Zhang, Y., Han, X., Zheng, K., Zhang, Z., Zhang, X., Fu, J., Ji, Y., Hao, Y., Guo, X., and Wang, Z.L.: Direct observation of super-plasticity of β-SiC nanowires at low temperature. Adv. Fund. Mater. 17, 3435 (2007).CrossRefGoogle Scholar
24.Namazu, T., Isono, Y., and Tanaka, T.: Nano-scale bending test of Si beam for MEMS, in Annual International Conference on MEMS 2000 (IEEE, Piscataway, NJ, 2000), pp. 205210.Google Scholar
25.Namazu, T. and Isono, Y.: High-cycle fatigue test of nanoscale Si and SiO2 wires based on AFM technique, in Annual International Conference on MEMS 2003 (IEEE, Piscataway, NJ, 2003), pp. 662665.Google Scholar
26.Mook, W.M., Nowak, J.D., Perrey, C.R., Carter, C.B., Mukherjee, R., Girshick, S.L., McMurry, P.H. and Gerberich, W.W.: Compressive stress effect on nanoparticle modulus and fracture. Phys. Rev. B 75, 1 (2007)CrossRefGoogle Scholar
27.Gerberich, W.W., Mook, W.M., Perrey, C.R., Carter, C.B., Baskes, M.I., Mukherjee, R., Gidwani, A., Heberlein, J., McMurry, P.H., and Girshick, G.L.: Superhard silicon nanospheres. J. Mech. Phys. Solids 51, 979 (2003).CrossRefGoogle Scholar
28.Nakao, S., Ando, T., Shikida, M., and Sato, K.: Effects of temperature on fracture toughness in a single-crystal-silicon film and transition in its fracture mode. J. Micromech. and Microeng. 18, 1 (2008).CrossRefGoogle Scholar
29.Haasen, P., Messerschmidt, U., and Skrotzki, W.: Low-energy dislocation structures in ionic crystals and semiconductors. Mater. Sci. Eng. 81, 493 (1986).CrossRefGoogle Scholar
30.Xu, G. and Zhang, C.: Analysis of dislocation nucleation from a crystal surface based on the Peierls-Nabarro dislocation model. J. Mech. Phys. Solids 51, 1371 (2003).CrossRefGoogle Scholar
31.Michler, J., Wasmer, K., Meier, S., Ostlund, F., and Leifer, K.: Plastic deformation of gallium arsenide micropillars under uniaxial compression at room temperature. Appl. Phys. Lett. 90(41. 1 (2007).CrossRefGoogle Scholar
32.Schuh, C.A., Mason, J.K., and Lund, A.C.: Quantitative insight into dislocation nucleation from high temperature nanoindentation experiments. Nat. Mater. 4, 617 (2005).CrossRefGoogle ScholarPubMed
33.Zhu, T., Li, J., Samata, A., Leach, A., and Gall, K.: Temperature and strain-rate dependence of surface dislocation nucleation. Phys. Rev. Lett. 100, 1 (2008).CrossRefGoogle ScholarPubMed
34.Page, T.F., Riester, L., and Hainsworth, S.V.: The plasticity response of 6H SiC and related isostructural materials to nanoindentation: Slip vs. densification, in Fundamentals of Nanoindentation and Nanotribology, edited by Moody, N.R., Gerberich, W.W., Burnham, N., and Baker, S.P. (Mater. Res. Soc. Symp. Proc. 522, Warrendale, PA, 1998), pp. 113118.Google Scholar
35.Tanaka, M. and Higashida, K.: HVEM characterization of crack tip dislocations in silicon crystals. J. Electron Microsc. (Tokyo) 53 (4), 353 (2004).CrossRefGoogle ScholarPubMed
36.Gerberich, W.W., Mook, W.M., Carter, C.B., and Ballarini, R.: A crack extension force correlation for hard materials. Int. J. Fract. 148, 109 (2007).CrossRefGoogle Scholar
37.Stauffer, D.D., Beaber, A., and Gerberich, W.W.: Unpublished Data, University of Minnesota.Google Scholar
38.Zhang, C. and Xu, G.: Energetics of dislocation nucleation under a nanoindenter. Mater. Sci. Eng., A 400–401, 471 (2005).CrossRefGoogle Scholar
39.Cordill, M.J., Moody, N.R., and Gerberich, W.W.: The role of dislocation walls for nanoindentation to shallow depths. Int. J. Plast. 25, 281 (2009).CrossRefGoogle Scholar
40.Lloyd, S.J., Casterello, A., Guiliani, F., Long, Y., McLaughlin, K.K., Molina-Aldaregula, J.M., Stelmashenko, N.A., Vandepere, J.L., and Clegg, W.J.: Observations of nanoindents via cross-sectional transmission electron microscopy: A survey of deformation mechanisms. Proc. R. Soc. London, Ser. A 461, 2521 (2005).Google Scholar
41.Atkins, A.G. and Mai, Y.W.: Elastic and Plastic Fracture: Metals, Polymers, Ceramics, Composites, Biological Materials (Ellis Horwood, Chichester; Halsted Press, New York, 1985).Google Scholar
42.Johnson, K.L.: Contact Mechanics (Cambridge University Press, Cambridge, UK, 1985, reprinted 2001), pp. 174178.CrossRefGoogle Scholar
43.Harvey, S., Huang, H., Venkataraman, S., and Gerberich, W.W.: Microscopy and microindentation mechanics of single crystal Fe – 3 wt% Si: Part I. Atomic force microscopy of a small indentation. J. Mater. Res. 8, 1291 (1993).CrossRefGoogle Scholar
44.Lockett, F.J.: Indentation of a rigid/plastic material by a conical indenter. J. Mech. Phys. Solids 11, 345 (1962).CrossRefGoogle Scholar