Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-29T05:27:44.388Z Has data issue: false hasContentIssue false

A search for a low temperature phase transition prior to superconducting behavior in the YBa2Cu3O7 compound

Published online by Cambridge University Press:  31 January 2011

M. A. Rodriguez
Affiliation:
Institute for Ceramic Superconductivity, New York State College of Ceramics at Alfred University, Alfred, New York 14802-1296
D. P. Matheis
Affiliation:
Institute for Ceramic Superconductivity, New York State College of Ceramics at Alfred University, Alfred, New York 14802-1296
S. S. Bayya
Affiliation:
Institute for Ceramic Superconductivity, New York State College of Ceramics at Alfred University, Alfred, New York 14802-1296
J. J. Simmins
Affiliation:
Institute for Ceramic Superconductivity, New York State College of Ceramics at Alfred University, Alfred, New York 14802-1296
R. L. Snyder
Affiliation:
Institute for Ceramic Superconductivity, New York State College of Ceramics at Alfred University, Alfred, New York 14802-1296
D. E. Cox
Affiliation:
Physics Department, Brookhaven National Laboratory, Upton, New York 11973
Get access

Abstract

We report the results of a systematic examination of the lattice parameters for the YBa2Cu3O7 compound in the 100 K to 110 K temperature range by means of high resolution synchrotron x-ray powder diffraction techniques. The data indicate a linear decrease in the lattice parameters with decreasing temperature over this temperature range. An observed asymmetric broadening of the diffraction peaks is explained by the presence of residual stress in the lattice.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Aleksandrov, O. V., Ivanenko, O. M., Karasik, V. R., Kiseleva, K. V., Mitsen, K. V., and Omel'yanovskiĭ, O. E., Fiz. Tverd. Tela (Russian) 30 (7), 20522057 (1988) [Sov. Phys. Solid State 30 (7), 1183–1186 (1988)].Google Scholar
2Golovashken, A. I., Ivanenko, O. M., Le, G. I.ĭtus, Mitsen, K. V., Karpinskii, O. G., and Shamrai, V. F., Pis'ma Zh. Eksp. Teor. Fiz. (Russian) 46 (8), 325327 (1987).Google Scholar
3Anshokova, N. V., Vorob'ev, G. P., Golovashken, A. I., Ivanenko, O. M., Kazeĭ, Z. A., Krynetskiĭ, I. B., Levitin, R. K., Mil', B. V., Mitsen, K. V., and Snegirev, V. V., Pis'ma Zh. Eksp. Teor. Fiz. (Russian) 46 (9), 373375 (1987).Google Scholar
4David, W. I. F., Edwards, P. P., Harrison, M. R., Jones, R., and Wilson, C. C., Nature 331, 245247 (1988).CrossRefGoogle Scholar
5Horn, P. M., Keane, D. T., Held, G. A., Jordan, J. L.-Sweet, Kaiser, D. L., and Holtzberg, F., Phys. Rev. Lett. 59 (24), 27722775 (1987).CrossRefGoogle Scholar
6Cox, D. E., Hastings, J. B., Thomlinson, W., and Prewitt, C. T., Nucl. Instrum. Methods 208, 573578 (1983).CrossRefGoogle Scholar
7Cox, D. E., Toby, B. H., and Eddy, M. M., Aust. J. Phys. 41, 117131 (1988).CrossRefGoogle Scholar
8Howard, S. A. and Snyder, R. L., J. Appl. Cryst. 22, 238243 (1989).CrossRefGoogle Scholar
9Kittel, C., Introduction to Solid State Physics, 5th ed. (John Wiley & Sons, Inc., New York, 1976), pp. 6365.Google Scholar
10Jorgensen, J. D., Veal, B. W., Kwok, W. K., Crabtree, G. W., Umezawa, A., Nowicki, L. J., and Paulikas, A. P., Phys. Rev. B 36, 57315734 (1987).CrossRefGoogle Scholar
11Sueno, S., Nakai, I., Okamura, F. P., and Ono, A., Jpn. J. Appl. Phys. 26 (5), L842–L844 (1987).CrossRefGoogle Scholar
12Khachaturyan, A. G., Semenovskaya, S. V., and Morris, J. W., Phys. Rev. B 37, 22432246 (1988).CrossRefGoogle Scholar
13Sarikaya, M. and Stern, E. A., Phys. Rev. B 37, 93739381 (1988).CrossRefGoogle Scholar