Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-28T00:44:20.306Z Has data issue: false hasContentIssue false

Secondary ionic forces in lead molybdate melt solidification

Published online by Cambridge University Press:  31 January 2011

H. C. Zeng*
Affiliation:
Department of Chemical Engineering, Faculty of Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260
L. C. Lim
Affiliation:
Department of Mechanical and Production Engineering, Faculty of Engineering and Institute of Materials Research and Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260
*
a)Address correspondence to this author.
Get access

Abstract

We report a dendritic crystallization of ionic melt of lead molybdate (PbMoO4) under a concentric thermal field. The solidified melt is a PbMoO4 single crystal with [001] axis normal to surface. The dendrite arms propagate and branch along 〈310〉 and 〈130〉, forming a well-organized surface structure. It is evident that the interaction between a cation to its second-nearest anions determines the dendrite development and meltsolidification.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Langer, J., Phys. Today 45 (10), 24 (1992).CrossRefGoogle Scholar
2.Glicksman, M. E. and Marsh, S. P., in Handbook of Crystal Growth, 1b Fundamentals, edited by Hurle, D. T. J. (North-Holland, Amsterdam, 1993), Chap. 15, p. 1075.Google Scholar
3.Park, J. S. and Verhoeven, J. D., Metall. & Mater. Trans. A 27, 2328 (1996).CrossRefGoogle Scholar
4.Li, D. and Herlach, D. M., Phys. Rev. Lett. 77, 1801 (1996).CrossRefGoogle Scholar
5.Wang, R. Y., Li, W. H., and Hogan, L. M., Metall. & Mater. Trans. A 28, 1233 (1997).CrossRefGoogle Scholar
6.Yu, H., Tandon, K.N. and Cahoon, J. R., Metall. & Mater. Trans. A 28, 1245 (1997).CrossRefGoogle Scholar
7.Zeng, H. C., Chong, T. C., Lim, L. C., Kumagai, H., and Hirano, M., J. Crystal Growth 140, 148 (1994).CrossRefGoogle Scholar
8.Zeng, H. C., Lim, L. C., Kumagai, H., and Hirano, M., J. Cryst. Growth 171, 493 (1997).CrossRefGoogle Scholar
9.Zeng, H. C., J. Cryst. Growth 160, 119 (1996).CrossRefGoogle Scholar
10.Zeng, H. C., J. Cryst. Growth 171, 136 (1997).CrossRefGoogle Scholar
11.Namikata, T. and Esashi, S., Jpn. J. Appl. Phys. 11, 772 (1972).CrossRefGoogle Scholar
12.Esashi, S. and Namikata, T., Fujitsu Sci. Technol. J., December Issue, 211 (1972).Google Scholar
13.Loiacono, G. M., Balascio, J. F., Bonner, R., and Savage, A., J. Cryst. Growth 21, 1 (1974).CrossRefGoogle Scholar
14.Lim, L. C., Tan, L. K., and Zeng, H. C., J. Cryst. Growth 167, 686 (1996).CrossRefGoogle Scholar
15.Wyckoff, R. W. G., Crystal Structure, Vol. 2 (Interscience, New York, 1963), Chap. VIIIA, p. 22.Google Scholar
16.Kimura, M., Ohba, H., and Yamazaki, T., Optronics (in Japanese) 9, 95 (1985).Google Scholar
17.Tarabaev, L. P., Mashikhin, A. Yu., and Esin, V. O., J. Cryst. Growth 114, 603 (1991).CrossRefGoogle Scholar
18.Laudise, R. A., The Growth of Single Crystals (Prentice-Hall, Englewood Cliffs, NJ, 1970), p. 106.Google Scholar
19.Zeng, H. C., Chong, T. C., Lim, L. C., Kumagai, H., and Hirano, M., J. Cryst. Growth 160, 296 (1996).CrossRefGoogle Scholar
20.Zeng, H. C., J. Cryst. Growth 173, 446 (1997).CrossRefGoogle Scholar