Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-13T01:09:58.822Z Has data issue: false hasContentIssue false

Selective catalytic reduction of NOx with NH3 over cerium–tungsten–titanium mixed oxide catalyst: Synergistic promotional effect of H2O2 and Ce4+

Published online by Cambridge University Press:  06 August 2020

Zhi-bo Xiong*
Affiliation:
School of Energy and Power Engineering, University of Shanghai for Science & Technology, Shanghai200093, China Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, Shanghai200093, China
Xiao-ke Qu
Affiliation:
School of Energy and Power Engineering, University of Shanghai for Science & Technology, Shanghai200093, China
Yan-ping Du
Affiliation:
China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai200240, China
Cheng-xu Li
Affiliation:
School of Energy and Power Engineering, University of Shanghai for Science & Technology, Shanghai200093, China
Jing Liu
Affiliation:
School of Energy and Power Engineering, University of Shanghai for Science & Technology, Shanghai200093, China
Wei Lu
Affiliation:
School of Energy and Power Engineering, University of Shanghai for Science & Technology, Shanghai200093, China
Shui-mu Wu
Affiliation:
School of Energy and Power Engineering, University of Shanghai for Science & Technology, Shanghai200093, China SPIC Powder Plant Operation Technology (Beijing) Co., Ltd, Beijing102209, China
*
a)Address all correspondence to this author. e-mail: xzb328@163.com
Get access

Abstract

A highly active catalyst of cerium–tungsten–titanium mixed oxide was synthesized by introducing Ce4+ and H2O2 in the base sample of Ce20W10Ti100Oz–Ce3+. As a consequence, the NH3-SCR activity of Ce20W10Ti100Oz–Ce3+ is significantly improved as the additives of Ce4+ and H2O2 enlarge the Brunauer–Emmett–Teller (BET) surface area by refining its pore size. Meanwhile, the introduction of Ce4+ increases the Lewis acid sites of Ce20W10Ti100Oz–Ce3+ and decreases its low-temperature Brønsted acid sites. The further addition of H2O2 improves the Brønsted acid sites and dispersion of cerium/tungsten species, and thereby enhances the concentrations of the adsorbed oxygen (Oα) and the adsorbed oxygen $\lpar {\rm {O}^{\prime}}_{\rm \alpha} \rpar$ due to the activation of chemisorbed water on the surface of the catalyst. The addition of Ce4+ and H2O2 shows a synergistic promotional effect, which is due to the largest BET surface area and the highest concentrations of Oα or/and ${\rm {O}^{\prime}}_{\rm \alpha}$. Ce20W10Ti100Oz–Ce3+:Ce4+ = 17.5:2.5 + H2O2 exhibits the highest catalytic activity compared with the conventional ones (Fig. 5).

Type
Article
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Tang, Y.R., Tao, Y.Y., Wu, J.Y., Xu, L.J., Huang, X.Y., Zhou, X.M., Xie, A.J., Luo, S.P., Yao, C., and Li, X.Z.: MnFeTiOx/attapulgite catalysts with excellent potassium resistance for SCR of NOx with NH3 at low temperatures. J. Mater. Res. 34, 11881199 (2019).CrossRefGoogle Scholar
Gu, Q.X., Wang, L., Wang, Y., and Li, X.: Effect of praseodymium substitution on La1-xPrxMnO3 (x=0-0.4) perovskites and catalytic activity for NO oxidation. J. Phys. Chem. Solids 133, 5258 (2019).CrossRefGoogle Scholar
Chen, J., Duan, L.B., Donat, F., Müller, C.R., Anthony, E.J., and Fan, M.H.: Self-activated, nanostructured composite for improved CaL-CLC technology. Chem. Eng. J. 351, 10381046 (2018).CrossRefGoogle Scholar
Jin, Q.J., Shen, Y.S., Sui, G.R., Tao, X.J., Pan, Y.C., and Zhu, S.M.: Synergistic catalytic removals of NO, CO and HC over CeO2 modified Mn-Mo-W-Ox /TiO2-SiO2 catalyst. J. Rare Earth 36, 148 (2018).CrossRefGoogle Scholar
Chen, H.F., Xia, Y., Fang, R.Y., Huang, H., Gan, Y.P., Liang, C., Zhang, J., Zhang, W.K., and Liu, X.S.: The effects of tungsten and hydrothermal aging in promoting NH3-SCR activity on V2O5/WO3-TiO2 catalysts. Appl. Surf. Sci. 459, 639646 (2018).10.1016/j.apsusc.2018.08.046CrossRefGoogle Scholar
Li, Y.H., Zhang, Z.M., Jia, P., Dong, D.H., Wang, Y., Hu, S., Xiang, J., Liu, Q., and Hu, X.: Ethanol steam reforming over cobalt catalysts: Effect of a range of additives on the catalytic behaviors. J. Energy Inst. 93, 165184 (2020).CrossRefGoogle Scholar
Huang, X.Y., Xie, A.J., Wu, J.Y., Xu, L.J., Luo, S.P., Xia, J.W., Yao, C., and Li, X.Z.: Cerium modified MnTiOx/attapulgite catalyst for low-temperature selective catalytic reduction of NOx with NH3. J. Mater. Res. 33, 35593569 (2018).CrossRefGoogle Scholar
Sun, H., Liu, Z.G., Wang, Y., Quan, X., and Zhao, G.Z.: Novel metal-organic framework supported manganese oxides for the selective catalytic reduction of NOx with NH3: Promotional role of the support. J. Hazard. Mater. 380, 120800 (2019).10.1016/j.jhazmat.2019.120800CrossRefGoogle ScholarPubMed
Jiang, H.X., Zhang, L., Zhao, J., Li, Y.H., and Zhang, M.H.: Study on MnOx-FeOy composite oxide catalysts prepared by supercritical antisolvent process for low-temperature selective catalytic reduction of NOx. J. Mater. Res. 31, 702712 (2016).CrossRefGoogle Scholar
Zhang, G.D., Huang, X.S., and Tang, Z.C.: New insight into the synergistic promotion effect of phosphorus and molybdenum on the ceria-titanium catalysts for superior SCR performance. Mol. Catal. 478, 110562 (2019).CrossRefGoogle Scholar
Zhao, S.J., Wang, L., Wang, Y., and Li, X.: Hierarchically porous LaFeO3 perovskite prepared from the pomelo peel bio-template for catalytic oxidation of NO. J. Phys. Chem. Solids 116, 4349 (2018).CrossRefGoogle Scholar
Wu, X., Meng, H., Du, Y.L., Liu, J.N., Hou, B.H., and Xie, X.M.: Fabrication of highly dispersed Cu-based oxides as desirable NH3-SCR catalysts via employing CNTs to decorate the CuAl-layered double hydroxides. ACS Appl. Mater. Inter. 11, 3291732927 (2019).CrossRefGoogle ScholarPubMed
Jiang, H.X., Wang, H.Q., Kuang, L., Li, G.M., and Zhang, M.H.: Synthesis of MnOx-CeO2 center dot NOx catalysts by polyvinylpyrrolidone-assisted supercritical antisolvent precipitation. J. Mater. Res. 29, 21882197 (2014).CrossRefGoogle Scholar
Wu, X., Meng, H., Du, Y.L., Liu, J.N., Hou, B.H., and Xie, X.M.: Insight into Cu2O/CuO collaboration in the selective catalytic reduction of NO with NH3: Enhanced activity and synergistic mechanism. J. Catal. 384, 7287 (2020).CrossRefGoogle Scholar
Pan, Y.C., Shen, Y.S., Jin, Q.J., and Zhu, S.M.: Promotional effect of Ba additives on MnCeOx/TiO2 catalysts for NH3-SCR of NO at low temperature. J. Mater. Res. 33, 24142422 (2018).CrossRefGoogle Scholar
Jin, Q.J., Shen, Y.S., Zhu, S.M., Li, H.Y., and Li, Y.B.: Rare earth ions (La, Nd, Sm, Gd, and Tm) regulate the catalytic performance of CeO2/Al2O3 for NH3-SCR of NO. J. Mater. Res. 32, 24382445 (2017).CrossRefGoogle Scholar
Liu, R., Ji, L.C., Xu, Y.F., Ye, F., and Jia, F.: Catalytic performance and SO2 tolerance of tetragonal-zirconia-based catalysts for low-temperature selective catalytic reduction. J. Mater. Res. 31, 25902597 (2016).CrossRefGoogle Scholar
Wu, X., Feng, Y.L., Du, Y.L., Liu, X.Z., Zou, C.L., and Li, Z.: Enhancing DeNOx performance of CoMnAl mixed metal oxides in low-temperature NH3-SCR by optimizing layered double hydroxides (LDHs) precursor template. Appl. Surf. Sci. 467–468, 802810 (2019).CrossRefGoogle Scholar
Lv, Y., Lv, X.G., Fang, F., Yang, T.G., and Romero, C.E.: Adaptive selective catalytic reduction model development using typical operating data in coal-fired power plants. Energy 192, 116589 (2020).CrossRefGoogle Scholar
Hu, Q., Huang, B.Y., Li, Y., Zhang, S.M., Zhang, Y.X., Hua, X.H., Liu, G., Li, B.S., Zhou, J.Y., Xie, E.Q., and Zhang, Z.X.: Methanol gas detection of electrospun CeO2 nanofibers by regulating Ce3+/Ce4+ mole ratio via Pd doping. Sensor Actuat. B Chem. 307, 127638 (2020).CrossRefGoogle Scholar
Cao, L., Chen, L., Wu, X.D., Ran, R., Xu, T.F., Chen, Z., and Weng, D.: TRA and DRIFTS studies of the fast SCR reaction over CeO2/TiO2 catalyst at low temperatures. Appl. Catal. A Gen. 557, 4654 (2018).CrossRefGoogle Scholar
Jin, Q.J., Shen, Y.S., Ma, L., Pan, Y.C., Zhu, S.M., Zhang, J., Zhou, W., Wei, X.F., and Li, X.J.: Novel TiO2 catalyst carriers with high thermostability for selective catalytic reduction of NO by NH3. Catal. Today 327, 279287 (2019).CrossRefGoogle ScholarPubMed
Zhan, S.H., Zhang, H., Zhang, Y., Shi, Q., Li, Y., and Li, J.: Efficient NH3-SCR removal of NOx with highly ordered mesoporous WO3(x)-CeO2 at low temperatures. Appl. Catal. B Environ. 203, 199209 (2017).CrossRefGoogle Scholar
Wang, D., Peng, Y., Yang, Q.L., Hu, F.Y., Li, J.H., and Crittenden, J.: NH3-SCR performance of WO3 blanketed CeO2 with different morphology: Balance of surface reducibility and acidity. Catal. Today 332, 4248 (2019).CrossRefGoogle Scholar
Chen, L., Wang, D., Wang, J.D., Weng, D., and Cao, L.: Hydrothermal and sulfur aging of CeTi/CeWTi catalysts for selective catalytic reduction of NOx with NH3. J. Rare Earth 37, 829836 (2019).CrossRefGoogle Scholar
Peng, Y., Wang, D., Li, B., Wang, C.Z., Li, J.H., Crittenden, J., and Hao, J.M.: Impacts of Pb and SO2 poisoning on CeO2-WO3/TiO2-SiO2 SCR catalyst. Environ. Sci. Technol. 51, 1194311949 (2017).CrossRefGoogle ScholarPubMed
Liu, B.T., Huang, C.J., Ke, Y.X., Wang, W.H., Kuo, H.L., Lin, D., Lin, V., and Lin, S.H.: Enhanced selective catalytic reduction of NO over Mn-Ce catalysts with the acetic-acid-chelated titania support at low temperature. Appl. Catal. A Gen. 538, 7480 (2017).CrossRefGoogle Scholar
Zhang, P., Pan, W.G., Guo, R.T., Zhu, X.B., Liu, J., Qin, L., and She, X.L.: The Mo modified Ce/TiO2 catalyst for simultaneous Hg0 oxidation and NO reduction. J. Energy Inst. 92, 13131328 (2019).CrossRefGoogle Scholar
Xiong, Z.B., Wu, C., Hu, Q., Wang, Y.Z., Jin, J., Lu, C.M., and Guo, D.X.: Promotional effect of microwave hydrothermal treatment on the low-temperature NH3-SCR activity over iron-based catalyst. Chem. Eng. J. 286, 459466 (2016).CrossRefGoogle Scholar
Xiong, Z.B., Hu, Q., Liu, D.Y., Wu, C., Zhou, F., Wang, Y.Z., Jin, J., and Lu, C.M.: Influence of partial substitution of iron oxide by titanium oxide on the structure and activity of iron-cerium mixed oxide catalyst for selective catalytic reduction of NOx with NH3. Fuel 165, 432439 (2016).CrossRefGoogle Scholar
Zhao, K., Han, W.L., Lu, G.X., Lu, J.Y., Tang, Z.C. and Zhen, X.P.: Promotion of redox and stability features of doped Ce-W-Ti for NH3-SCR reaction over a wide temperature range. Appl. Surf. Sci. 379, 316322 (2016).CrossRefGoogle Scholar
Zhu, X.B., Wang, Y.L., Huang, Y., and Cai, Y.X.: Selective catalytic reduction of NO with NH3 over Ce-W-Ti oxide catalysts prepared by solvent combustion method. Appl. Sci. 8, 2430 (2018).CrossRefGoogle Scholar
Chen, L., Weng, D., Wang, J.D., Weng, D., and Cao, L.: Low-temperature activity and mechanism of WO3-modified CeO2-TiO2 catalyst under NH3-NO/NO2 SCR conditions. Chinese J. Catal. 39, 18041813 (2018).CrossRefGoogle Scholar
Shan, W.P., Liu, F.D., He, H., Shi, X.Y., and Zhang, C.B.: A superior Ce-W-Ti mixed oxide catalyst for the selective catalytic reduction of NOx with NH3. Appl. Catal. B Environ. 115–116, 100106 (2012).CrossRefGoogle Scholar
Jiang, Y., Xing, Z.M., Wang, X.C., Huang, S.B., Wang, X.W., and Liu, Q.Y.: Activity and characterization of a Ce-W-Ti oxide catalyst prepared by a single step sol-gel method for selective catalytic reduction of NO with NH3. Fuel 151, 124129 (2015).CrossRefGoogle Scholar
Wu, B., Xiong, Y., and Ge, Y.: Simultaneous removal of SO2 and NO from flue gas with ·OH from the catalytic decomposition of gas-phase H2O2 over solid-phase Fe2(SO4)3. Chem. Eng. J. 331, 343354 (2018).CrossRefGoogle Scholar
Miao, Y.G. and Gao, J.C.: Preparation of {010}-faceted anatase TiO2 nanocuboids from peroxotitanium complex solution. J. Solid State. Chem. 196, 372378 (2012).CrossRefGoogle Scholar
Yao, H.Y., Cai, S.X., Yang, B., Han, L.P., Wang, P.L., Li, H.R., Yan, T.T., Shi, L.Y., and Zhang, D.S.: In situ decorated MOF-derived Mn-Fe oxides on Fe mesh as novel monolithic catalysts for NOx reduction. New J. Chem. 44, 23572366 (2020).CrossRefGoogle Scholar
Liu, J., Xiong, Z.B., Zhou, F., Lu, W., Jin, J., and Ding, S.F.: Promotional effect of H2O2 modification on the cerium-tungsten-titanium mixed oxide catalyst for selective catalytic reduction of NO with NH3. J. Phys. Chem. Solids 121, 360366 (2018).CrossRefGoogle Scholar
Jiang, Y., Shi, W.Y., Lu, M.Y., Li, Q.Y., Lai, C.Z., Gao, W.Q., Yang, L., and Yang, Z.D.: Enhanced low-temperature NH3-SCR activity over Ce-Ti oxide catalysts by hydrochloric acid treatment. Aerosol Air Qual. Res. 19, 23812386 (2019).CrossRefGoogle Scholar
Xiong, Z.B., Liu, J., Zhou, F., Liu, D.Y., Lu, W., Jin, J., and Ding, S.F.: Selective catalytic reduction of NOx with NH3 over iron-cerium-tungsten mixed oxide catalyst prepared by different methods. Appl. Surf. Sci. 406, 218225 (2017).CrossRefGoogle Scholar
Wu, Z.H., Zeng, Y.Q., Song, F.J., Zhang, S.L., and Zhong, Q.: Active sites assembly effect on CeO2-WO3-TiO2 catalysts for selective catalytic reduction of NO with NH3. Mol. Catal. 479, 110549 (2019).CrossRefGoogle Scholar
Crist, B.V.: XPS in industry—Problems with binding energies in journals and binding energy databases. J. Electron. Spectrosc. 231, 7587 (2019).CrossRefGoogle Scholar
Zhao, K., Han, W.L., Tang, Z.C., and Lu, J.Y.: High-efficiency environmental-friendly Fe–W–Ti catalyst for selective catalytic reduction of NO with NH3: The structure–activity relationship. Catal. Surv. Asia 22, 2030 (2018).CrossRefGoogle Scholar
Li, C.X., Xiong, Z.B., He, J.F., Qu, X.K., Li, Z.Z., Ning, X., Lu, W., Wu, S.M., and Tan, L.Z.: Influence of ignition atmosphere on the structural properties of magnetic iron oxides synthesized via solution combustion and the NH3-SCR activity of W/Fe2O3 catalyst. Appl. Catal. A Gen. 602, 117726 (2020).CrossRefGoogle Scholar
Xie, W.W., Zhang, G.D., Mu, B., Tang, Z.C., and Zhang, J.Y.: The promoting effect of palygorskite on CeO2-WO3-TiO2 catalyst for the selective catalytic reduction of NOx with NH3. Appl. Clay Sci. 192, 105641 (2020).CrossRefGoogle Scholar
Michalow-Mauke, K.A., Lu, Y., Kowalski, K., Graule, T., Nachtegaal, M., Kröcher, O., and Ferri, D.: Flame-made WO3/CeOx-TiO2 catalysts for selective catalytic reduction of NOx by NH3. ACS Catal. 5, 56575672 (2015).CrossRefGoogle Scholar
Li, C.X., Xiong, Z.B., Du, Y.P., Ning, X., Li, Z.Z., He, J.F., Qu, X.K., Lu, W., Wu, S.M., and Tan, L.Z.: Promotional effect of tungsten modification on magnetic iron oxide catalyst for selective catalytic reduction of NO with NH3. J. Energy Inst. doi:10.1016/j.joei.2020.03.012.Google Scholar
Liu, S.M., Guo, R.T., Wang, S.X., Pan, W.G., Sun, P., Li, M.Y., and Liu, S.W.: Deactivation mechanism of Ca on Ce/TiO2 catalyst for selective catalytic reduction of NOx with NH3. J. Taiwan Inst. Chem. E 78, 290298 (2017).CrossRefGoogle Scholar
Rasmussen, S.B., Portela, R., Bazin, P., Ávila, P., Bañares, M.A., and Daturi, M.: Transient operando study on the NH3/NH4+ interplay in V-SCR monolithic catalysts. Appl. Catal. B Environ. 224, 109115 (2018).CrossRefGoogle Scholar
Zhang, Q.L., Fan, J., Ning, P., Song, Z.X., Liu, X., Wang, L.Y., Wang, J., Wang, H.M., and Long, K.X.: In situ DRIFTS investigation of NH3-SCR reaction over CeO2/zirconium phosphate catalyst. Appl. Surf. Sci. 435, 10371045 (2018).CrossRefGoogle Scholar
Kwon, D.W., Kim, D.H., and Hong, S.C.: Promotional effect of antimony on the selective catalytic reduction NO with NH3 over V-Sb/Ti catalyst. Environ. Technol. 40, 25772587 (2019).CrossRefGoogle ScholarPubMed
Wang, H., Qu, Z.P., Dong, S.C., and Tang, C.: Mechanism study of FeW mixed oxides to the selective catalytic reduction of NOx with NH3: In situ DRIFTS and MS. Catal. Today 307, 3540 (2018).CrossRefGoogle Scholar
Zeng, Y.Q., Zhang, S.L., Wang, Y.N., and Zhong, Q.: CeO2 supported on reduced TiO2 for selective catalytic reduction of NO by NH3. J. Colloid Interf. Sci. 496, 487495 (2017).CrossRefGoogle Scholar
Fan, J., Ning, P., Song, Z.X., Liu, X., Wang, L.Y., Wang, J., Wang, H.M., and Zhang, Q.L.: Mechanistic aspects of NH3-SCR reaction over CeO2/TiO2-ZrO2-SO42− catalyst: In situ DRIFTS investigation. Chem. Eng. J. 334, 855863 (2018).CrossRefGoogle Scholar
Shi, R.H., Lin, X.Y., Zheng, Z.G., Feng, R., Liu, Y.M., Ni, L.F., and Yuan, B.H.: Selective catalytic reduction of NOx with NH3 over Sb modified CeZrOx catalyst. React. Kinet. Mech. Catal. 124, 217227 (2018).CrossRefGoogle Scholar
Supplementary material: File

Xiong et al. supplementary material

Figures S1-S2 and Table S3

Download Xiong et al. supplementary material(File)
File 218.5 KB