Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-28T16:28:02.005Z Has data issue: false hasContentIssue false

Selective gas-sensing properties of surface ruthenated tin oxide

Published online by Cambridge University Press:  26 July 2012

V. A. Chaudhary
Affiliation:
Physical and Materials Chemistry Division, National Chemical Laboratory, Pune-411008, India
I. S. Mulla
Affiliation:
Physical and Materials Chemistry Division, National Chemical Laboratory, Pune-411008, India
K. Vijayamohanan
Affiliation:
Physical and Materials Chemistry Division, National Chemical Laboratory, Pune-411008, India
Get access

Extract

Gas-sensing properties of a novel surface functionalized tin oxide material have been studied to demonstrate the possibility of selectivity control by surface state formation. Covalent anchoring of ruthenium oxide on the tin oxide surface (ruthenated tin oxide) is found to give considerable enhancement in sensitivity (320) as well as selectivity to 1000 ppm of liquified petroleum gas (LPG) at 300 °C compared to the sensitivity (4) of pure tin oxide samples. The amount and distribution of grafted ruthenium oxide on the surface of tin oxide seems to be the most important parameter controlling the change in electrical transport with LPG gas adsorption.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Nelson, R. J., Williams, J. S., Leamy, H.J., Miller, B., Casey, H. C. Jr., Parkinson, B. A., and Heller, A. H., Appl. Phys. Lett. 36, 77 (1980).Google Scholar
2.Sandroff, C. J., Nottenburg, R. N., Bischoff, J. C., and Bhat, R., Appl. Phys. Lett. 51, 33 (1987).CrossRefGoogle Scholar
3.Yamazoe, N., Muira, N., and Tamaki, J., Trans. Mater. Res. Soc. Jpn. 15A, 111 (1994).Google Scholar
4.Duh, J., Jou, J. W., and Chiou, B. S., J. Electrochem. Soc. 136, 2740 (1989).CrossRefGoogle Scholar
5.Satio, S., Miyayama, M., Kaumato, K., and Yanagida, H., J. Am. Ceram. Soc. 68, 40 (1985).Google Scholar
6.Lee, D. D. and Choi, D. H., Sens. Actuators B1, 231 (1990).CrossRefGoogle Scholar
7.Raju, A. R., Seshadri, K., and Rao, C. N. R., Talanta 39, 1543 (1992).CrossRefGoogle Scholar
8.Mulla, I. S., Pradhan, S. D., and Vijayamohanan, K., Sens. Actuators A 57, 217 (1996).CrossRefGoogle Scholar
9.Yamazoe, N., Sens. Actuators B5, 7 (1991).CrossRefGoogle Scholar
10.Brown, A. P. and Anson, F. C., Anal. Chem. 49, 1589 (1977).CrossRefGoogle Scholar
11.Harakoma, A. M., Romppainen, R., Torveli, H., and Leppavouri, S., J. Euro. Ceram. Soc. 6 (6), 361 (1990).CrossRefGoogle Scholar