Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-28T01:05:57.836Z Has data issue: false hasContentIssue false

Selective growth of diamond crystals on the apex of silicon pyramids

Published online by Cambridge University Press:  31 January 2011

R. Ramesham
Affiliation:
Electrical Engineering Department, Alabama Microelectronics Science and Technology Center, Auburn University, Auburn, Alabama 36849-5201
C. Ellis
Affiliation:
Electrical Engineering Department, Alabama Microelectronics Science and Technology Center, Auburn University, Auburn, Alabama 36849-5201
Get access

Abstract

Diamond crystals have been selectively grown on the apex of anisotropically chemically etched silicon pyramids. A novel process sequence is developed which exposes a patterned sharp apex of silicon pyramids surrounded by thermally grown silicon dioxide to a high pressure microwave plasma-assisted chemical vapor deposition (HPMACVD) process where the reactant feed gases are methane and hydrogen. The nucleation rate of diamond is very high on the sharp edge of a silicon mesa structure or an apex of a silicon pyramid, as anticipated. Selective growth of diamond particles on the apex of silicon pyramids fabricated using various approaches was analyzed by scanning electron microscopy.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Mitsuda, K., Kojima, Y., Yoshida, T., and Akashi, K., J. Mater. Sci. 22, 1557 (1987).CrossRefGoogle Scholar
2.Yugo, S., Kimura, T., Kanai, H., and Adachi, Y., in Novel Refractory Semiconductors, edited by Emin, D., Aselage, T. L., and Wood, C. (Mater. Res. Soc. Symp. Proc. 97, Pittsburgh, PA, 1987), pp. 327332.Google Scholar
3.Chang, C. P., Flamm, D. L., Ibbotson, D. E., and Mucha, J. A., J. Appl. Phys. 63, 1744 (1988).CrossRefGoogle Scholar
4.Hirabayashi, K., Taniguchi, Y., Takaraatsu, O., Ikeda, T., Ikoma, K., and Kurihara, N. I., Appl. Phys. Lett. 53, 1815 (1988).CrossRefGoogle Scholar
5.Davidson, J. L., Ellis, C., and Ramesham, R., J. Electron. Mater. 18, 711 (1989).CrossRefGoogle Scholar
6.Ramesham, R., Roppel, T., Ellis, C., Jaworske, D. A., and Baugh, W., J. Mater. Res. 6, 1278 (1991).CrossRefGoogle Scholar
7.Ramesham, R., Roppel, T., Hajek, B. F., Ellis, C., and Loo, B. H., in New Diamond Science and Technology, edited by Messier, R., Glass, J. T., Butler, J. E., and Roy, R. (Mater. Res. Soc. Symp. Int. Proc. NDST-2, Pittsburgh, PA, 1991), pp. 943948.Google Scholar
8.Bean, K. E., Semiconductor Materials and Process Technology Handbook, edited by McGuire, G. E. (Noyes Publications, Park Ridge, NJ), Chap. 4, p. 126.Google Scholar
9.Denning, P. A. and Stevenson, D. A, in New Diamond Science and Technology, edited by Messier, R., Glass, J. T., Butler, J. E., and Roy, R. (Mater. Res. Soc. Symp. Int. Proc. NDST-2, Pittsburgh, PA, 1991), pp. 403408.Google Scholar
10.Denning, P. A. and Stevenson, D. A., in Applications of Diamond Films and Related Materials, edited by Tzeng, Y., Yoshikawa, M., Murakawas, M., and Feldman, A. (Mater. Sci. Monographs 73, Elsevier, Amsterdam), pp. 383388.Google Scholar
11.Ramesham, R., Communicated at the Spring Electrochemical Society Meeting, Washington, DC, May 510, 1991.Google Scholar
12.Kenny, T. W., Waltman, S. W., Reynolds, J. K., and Kaiser, W. J., Appl. Phys. Lett. 58, 100 (1991).CrossRefGoogle Scholar