Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-28T16:27:10.990Z Has data issue: false hasContentIssue false

Self-assembled lipid nanotubes by rational design

Published online by Cambridge University Press:  28 January 2011

Thomas Barclay
Affiliation:
Nanomaterials Group, School of Chemical & Physical Sciences, Flinders University, Adelaide, South Australia, 5001, Australia
Kristina Constantopoulos
Affiliation:
Nanomaterials Group, School of Chemical & Physical Sciences, Flinders University, Adelaide, South Australia, 5001, Australia
Janis Matisons*
Affiliation:
Nanomaterials Group, School of Chemical & Physical Sciences, Flinders University, Adelaide, South Australia, 5001, Australia
*
a)Address all correspondence to this author. e-mail: jmatisons@gelest.com
Get access

Abstract

Five lipids were self-assembled in aqueous dispersions into high axial ratio nanostructures. Thermal analysis was conducted on a glycolipid self-assembled into nanotubes, previously developed by Kamiya et al. [S. Kamiya, H. Minamikawa, J-H. Jung, B. Yang, M. Masuda, and T. Shimizu, Langmuir21, 743 (2005)], showing a dry melting onset of 148.2 °C and evidence of a highly ordered supramolecular structure. A novel hybrid structure of the glycolipid nanotubes decorated with silver nanoparticles was created. The self-assembly of four new amphiphiles, with serine and glutamic acid head groups attached to vaccenic acid and diacetylenic hydrophobic tails, was also investigated. The morphologies of these aggregates included high axial ratio nanostructures, such as nanotubes; and flat, twisted, and helical ribbons. The supramolecular aggregates of the five lipids reflect aspects of the molecular structure, such as chirality, providing evidence that such organized aggregates can be created by a rational approach to molecular design.

Type
Reviews
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Philp, D. and Stoddart, J.F.: Self-assembly in natural and unnatural systems. Angew. Chem. Int. Ed. 35, 1154 (1996).CrossRefGoogle Scholar
2.Philp, D. and Greig, L.M.: Applying biological principles to the assembly and selection of synthetic superstructures. Chem. Soc. Rev. 30, 287 (2001).Google Scholar
3.Kunitake, T.: Synthetic bilayer membranes: Molecular design, self-organization and application. Angew. Chem. Int. Ed. 31, 709 (1992).CrossRefGoogle Scholar
4.Elemans, J.A.A.W., Rowan, A.E., and Nolte, R.J.M.: Mastering molecular matter: Supramolecular architectures by hierarchical self-assembly. J. Mater. Chem. 13, 2661 (2003).CrossRefGoogle Scholar
5.Zhang, S.: Fabrication of novel biomaterials through molecular self-assembly. Nat. Biotechnol. 21, 1171 (2003).CrossRefGoogle ScholarPubMed
6.Schnur, J.M.: Lipid tubules: A paradigm for molecularly engineered structures. Science 262, 1669 (1993).CrossRefGoogle ScholarPubMed
7.Barauskas, J., Johnsson, M., and Tiberg, F.: Self-assembled lipid superstructures: Beyond vesicles and liposomes. Nano Lett. 5, 1615 (2005).CrossRefGoogle ScholarPubMed
8.Kunitake, T., Okahata, Y., Shimomura, M., Yasunami, S., and Takarabe, K.: Formation of stable bilayer assemblies in water from single-chain amphiphiles: Relationship between the amphiphile structure and the aggregate morphology. J. Am. Chem. Soc. 103, 5401 (1981).CrossRefGoogle Scholar
9.Ringsdorf, H., Schlarb, B., and Vensmer, J.: Molecular architecture and function of polymeric oriented systems: Models for the study of organization, surface recognition, and dynamics of biomembranes. Angew. Chem. Int. Ed. 27, 113 (1988).CrossRefGoogle Scholar
10.Israelachvili, J.N., Mitchell, D.J., and Ninham, B.W.: Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J. Chem. Soc., Faraday Trans. 2 72, 1525 (1976).CrossRefGoogle Scholar
11.Reichel, F., Roelofsen, A.M., Geurts, H.P.M., Hämäläinen, T.I., Feiters, M.C., and Boons, G.-J.: Stereochemical dependance of the self-assembly of the immunoadjuvants pam3cys-ser. J. Am. Chem. Soc. 121, 7989 (1999).CrossRefGoogle Scholar
12.Shimizu, T., Masuda, M., and Minamikawa, H.: Supramolecular nanotube architectures based on amphiphilic molecules. Chem. Rev. 105, 1401 (2005).CrossRefGoogle ScholarPubMed
13.Selinger, J.V., MacKintosh, F.C., and Schnur, J.M.: Theory of cylindrical tubules and helical ribbons of chiral lipid membranes. Phys. Rev. E: Stat. Phys. Plasmas Fluids Relat. Interdisciplin. Top. 53, 3804 (1996).CrossRefGoogle ScholarPubMed
14.Shashidar, R. and Schnur, J.M.: Self-assembling tubules from phospholipids, in Molecular and Biomolecular Electronics, edited by Birge, R.R. (American Chemical Society, Washington, DC, 1994), pp. 455473.CrossRefGoogle Scholar
15.Spector, M.S., Selinger, J.V., and Schnur, J.M.: Chiral molecular self-assembly, in Materials-Chirality, edited by Green, M.M., Nolte, R.J.M., and Meijer, E.W. (John Wiley & Sons, New York, 2004), p. 281.Google Scholar
16.Helfrich, W. and Prost, J.: Intrinsic bending force in anisotropic membranes made of chiral molecules. Phys. Rev. A 38, 3065 (1988).CrossRefGoogle ScholarPubMed
17.Selinger, J.V., Spector, M.S., and Schnur, J.M.: Theory of self-assembled tubules and helical ribbons. J. Phys. Chem. B 105, 7157 (2001).CrossRefGoogle Scholar
18.Thomas, B.N., Lindeman, C.M., Corcoran, R.C., Cotant, C.L., Kirsch, J.E., and Persichini, P.J.: Phosphonate lipid tubules. II. J. Am. Chem. Soc. 124, 1227 (2002).CrossRefGoogle ScholarPubMed
19.Frusawa, H., Fukagawa, A., Ikeda, Y., Araki, J., Ito, K., John, G., and Shimizu, T.: Aligning a single-lipid nanotube with moderate stiffness. Angew. Chem. Int. Ed. 42, 72 (2003).CrossRefGoogle ScholarPubMed
20.Wilson-Kubalek, E.M., Brown, R.E., Celia, H., and Milligan, R.A.: Lipid nanotubes as substrates for helical crystallization of macromolecules. PNAS 95, 8040 (1998).CrossRefGoogle ScholarPubMed
21.Ringler, P., Müller, W., Ringsdorf, H., and Brisson, A.: Functionalized lipid tubules as tools for helical crystallization of proteins. Chemistry 3, 620 (1997).CrossRefGoogle Scholar
22.Rudolph, A.S., Stilwell, G., Cliff, R.O., Kahn, B., Spargo, B.J., Rollwagen, F., and Monroy, R.L.: Biocompatibility of lipid microcylinders: Effect on cell growth and antigen presentation in culture. Biomaterials 13, 1085 (1992).CrossRefGoogle ScholarPubMed
23.Zarif, L.: Elongated supramolecular assemblies in drug delivery. J. Controlled Release 81, 7 (2002).CrossRefGoogle ScholarPubMed
24.Meilander, N.J., Yu, X., Ziats, N.P., and Bellamkonda, R.V.: Lipid-based microtubular drug delivery vehicles. J. Controlled Release 71, 141 (2001).CrossRefGoogle ScholarPubMed
25.Schnur, J.M., Price, R., and Rudolph, A.S.: Biologically engineered microstructures: Controlled release applications. J. Controlled Release 28, 3 (1994).CrossRefGoogle Scholar
26.Yang, B., Kamiya, S., Shimizu, Y., Koshizaki, N., and Shimizu, T.: Glycolipid nanotube hollow cylinders as substrates: Fabrication of one-dimensional metallic-organic nanocomposites and metal nanowires. Chem. Mater. 16, 2826 (2004).CrossRefGoogle Scholar
27.Schnur, J.M. and Shashidar, R.: Self-assembling phospholipid tubules. Adv. Mater. 6, 971 (1994).CrossRefGoogle Scholar
28.Jung, J-H., Lee, S-H., Yoo, J-S., K, Yoshida, Shimizu, T., and Shinkai, S.: Creation of double silica nanotubes by using crown-appended cholesterol nanotubes. Chemistry 9, 5307 (2003).CrossRefGoogle ScholarPubMed
29.Zhou, Y. and Shimizu, T.: Lipid nanotubes: A unique template to create diverse one-dimensional nanostructures. Chem. Mater. 20, 625 (2008).CrossRefGoogle Scholar
30.Kogiso, M., Zhou, Y., and Shimizu, T.: Instant preparation of self-assembled metal-complexed lipid nanotubes that act as templates to produce metal-oxide nanotubes. Adv. Mater. 19, 242 (2007).CrossRefGoogle Scholar
31.Archibald, D.D. and Mann, S.: Template mineralization of self-assembled anisotropic lipid microstructures. Nature 364, 430 (1993).CrossRefGoogle Scholar
32.Kirkpatrick, D.A., Bergeron, G.L., Czarnaski, M.A., Hickman, J.J., Chow, G.M., Price, R., Ratna, B.L., Schoen, P.E., Stockton, W., Baral, S., Ting, A.C., and Schnur, J.M.: Demonstration of vacuum field emission from a self-assembling biomolecular microstructure composite. Appl. Phys. Lett. 60, 1556 (1992).CrossRefGoogle Scholar
33.Dong, H., Han, H., and Lee, S-Y.: Room-temperature single-step synthesis of nanoparticle-decorated nanotubes. J. Cryst. Growth 310, 1268 (2008).CrossRefGoogle Scholar
34.Zhou, Y., Kogiso, M., He, C., Shimizu, Y., Koshizaki, N., and Shimizu, T.: Fluorescent nanotubes consisting of CdS-embedded bilayer membranes of a peptide lipid. Adv. Mater. 19, 1055 (2007).CrossRefGoogle Scholar
35.Yager, P. and Schoen, P.E.: Formation of tubules by a polymerizable surfactant. Mol. Cryst. Liq. Cryst. 106, 371 (1984).CrossRefGoogle Scholar
36.Thomas, B.N., Safinya, C.R., Plano, R.J., and Clark, N.A.: Lipid tubule self-assembly: Length dependence on cooling rate through a first-order phase transition. Science 267, 1635 (1995).CrossRefGoogle ScholarPubMed
37.Mahajan, N., Zhao, Y., Du, T., and Fang, J.: Nanoscale ripples in self-assembled lipid tubules. Langmuir 22, 1973 (2006).CrossRefGoogle ScholarPubMed
38.Polidori, A., Pucci, B., Zarif, L., Lacombe, J-M., Riess, J.G., and Pavia, A.A.: Vesicles and other supramolecular systems made from double-tailed synthetic glycolipids derived from galactosylated tris(hydroxymethyl)aminomethane. Chem. Phys. Lipids 77, 225 (1995).CrossRefGoogle Scholar
39.Kamiya, S., Minamikawa, H., Jung, J-H., Yang, B., Masuda, M., and Shimizu, T.: Molecular structure of glucopyranosylamide lipid and nanotube morphology. Langmuir 21, 743 (2005).CrossRefGoogle ScholarPubMed
40.Yunis, E.J. and Lee, R.E.: Tubules of globoid leukodystrophy: A right-handed helix. Science 169, 64 (1970).CrossRefGoogle ScholarPubMed
41.Zastavker, Y.V., Asherie, N., Lomakin, A., Pande, J., Donovan, J.M., Schnur, J.M., and Benedek, G.B.: Self-assembly of helical ribbons. PNAS 96, 7883 (1999).CrossRefGoogle ScholarPubMed
42.Chung, D.S., Benedek, G.B., Konikoff, F.M., and Donovan, J.M.: Elastic free energy of anisotropic helical ribbons as metastable intermediates in the crystallization of cholesterol. PNAS 90, 11341 (1993).CrossRefGoogle ScholarPubMed
43.Nakashima, N., Asakuma, S., Kim, J-M., and Kunitake, T.: Helical superstructures are formed from chiral ammonium bilayers. Chem. Lett. 13, 1709 (1984).CrossRefGoogle Scholar
44.Lee, S.B., Koepsel, R., Stolz, D.B., Warriner, H.E., and Russell, A.J.: Self-assembly of biocidal nanotubes from a single-chain diacetylene amine salt. J. Am. Chem. Soc. 126, 13400 (2004).CrossRefGoogle ScholarPubMed
45.Wang, G. and Hollingsworth, R.I.: Easily accessible uniform wide-diameter helical, cylindrical, and nested diacetylene superstructures that can be metallized and oriented in magnetic fields. Langmuir 15, 6135 (1999).CrossRefGoogle Scholar
46.Yamada, K., Ihara, H., Ide, T., Fukumoto, T., and Hirayama, C.: Formation of helical super structure from single-walled bilayers by amphiphiles with oligo-L-glutamic acid-head group. Chem. Lett. 10, 1713 (1984).CrossRefGoogle Scholar
47.Shimizu, T. and Hato, M.: Self-assembling properties of synthetic peptidic lipids. Biochim. Biophys. Acta 1147, 50 (1993).CrossRefGoogle ScholarPubMed
48.Lee, S., Kim, E., Seo, M., Do, Y., Lee, Y., Jung, J., Kogiso, M., and Shimizu, T.: Self-assembled helical ribbon and tubes of alanine-based amphiphiles induced by two different formation mechanisms. Tetrahedron 64, 1301 (2008).CrossRefGoogle Scholar
49.Thomas, B.N., Corcoran, C.L., Cotant, C.L., Lindeman, C.M., Kirsch, J.E., and Persichini, P.J.: Phosphonate lipid tubules. I. J. Am. Chem. Soc. 120, 12178 (1998).CrossRefGoogle Scholar
50.Crews, P., Rodriguez, J., and Jaspars, M.: Organic Structure Analysis (Oxford University Press, New York, 1998).Google Scholar
51.Williams, D.H. and Fleming, I.: Spectroscopic Methods in Organic Chemistry, 5th ed. (McGraw-Hill Publishing Company, Maidenhead, UK, 1995).Google Scholar
52.John, G., Masuda, M., Okada, Y., Yase, K., and Shimizu, T.: Nantube formation from renewable resources via coiled nanofibers. Adv. Mater. 13, 715 (2001).3.0.CO;2-Z>CrossRefGoogle Scholar
53.Jung, J-H., John, G., Yoshida, K., and Shimizu, T.: Self-assembling structures of long-chain phenyl glucoside influenced by the introduction of double bonds. J. Am. Chem. Soc. 124, 10674 (2002).CrossRefGoogle ScholarPubMed
54.Jung, J.H., John, G., Masuda, M., Yoshida, K., Shinkai, S., and Shimizu, T.: Self-assembly of a sugar-based gelator in water: Its remarkable diversity in gelation ability and aggregate structure. Langmuir 17, 7229 (2001).CrossRefGoogle Scholar
55.Jung, J-H., Do, Y., Lee, Y-A., and Shimizu, T.: Self-assembling structures of long-chain sugar-based amphiphiles influenced by the introduction of double bonds. Chemistry 11, 5538 (2005).CrossRefGoogle ScholarPubMed
56.Guo, Y., Yui, H., Minamikawa, H., Masuda, M., Kamiya, S., Sawada, T., Ito, K., and Shimizu, T.: FT-IR study of the interlamellar water confined in glycolipid nanotube walls. Langmuir 21, 4610 (2005).CrossRefGoogle ScholarPubMed
57.Atkins, P. and de Paula, J.: Physical Chemistry, 7th ed. (Oxford University Press, Oxford, UK, 2002).Google Scholar
58.Zhou, Y., Ji, Q., Shimizu, Y., Koshizaki, N., and Shimizu, T.: One-dimensional confinement of CdS nanodots and subsequent formation of CdS nanowires by using a glycolipid nanotube as a ship-in-bottle scaffold. J. Phys. Chem. C 112, 18412 (2008).CrossRefGoogle Scholar
59.Yui, H., Shimizu, Y., Kamiya, S., Yamashita, I., Masuda, M., Ito, K., and Shimizu, T.: Encapsulation of ferritin within a hollow cylinder of glycolipid nanotubes. Chem. Lett. 34, 232 (2005).CrossRefGoogle Scholar
60.Sondi, I. and Salopek-Sondi, B.: Silver nanoparticles as antimicrobial agent: A case study on E. Coli as a model for gram-negative bacteria. J. Colloid Interface Sci. 275, 177 (2004).CrossRefGoogle Scholar
61.Zhou, Y., Kogiso, M., Asakawa, M., Dong, S., and Kiyama, R.: Antimicrobial nanotubes consisting of Ag-embedded peptidic lipid-bilayer membranes as delivery vehicles. Adv. Mater. 21, 1742 (2009).CrossRefGoogle Scholar
62.Lee, S.B., Koepsel, R., and Russell, A.J.: Surface dispersion and hardening of self-assembled diacetylene nanotubes. Nano Lett. 5, 2202 (2005).CrossRefGoogle ScholarPubMed
63.Barclay, T.G., Matisons, J., and Clarke, S.: Useful high-axial-ratio-nanostructures via self-assembly and template directed synthesis. Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) 47, 739 (2006).Google Scholar
64.Barclay, T.G.: Unpublished results.Google Scholar
65.Konikoff, F.M., Chung, D.S., Donovan, J.M., Small, D.M., and Carey, M.C.: Filamentous, helical and tubular microstructures during cholesterol crystallization from bile. J. Clin. Invest. 90, 1155 (1992).CrossRefGoogle ScholarPubMed
66.Mishra, B.K., Garrett, C.C., and Thomas, B.N.: Phospholpid tubulets. J. Am. Chem. Soc. 127, 4254 (2005).CrossRefGoogle Scholar
67.John, G., Jung, J-H., H., Minamikawa, Yoshida, K., and Shimizu, T.: Morphological control of helical solid bilayers in high-axial-ratio nanostructures through binary self-assembly. Chemistry 8, 5494 (2002).3.0.CO;2-P>CrossRefGoogle ScholarPubMed
68.Spector, M.S., Singh, A., Messersmith, P.B., and Schnur, J.M.: Chiral self-assembly of nanotubules and ribbons from phospholipid mixtures. Nano Lett. 1, 375 (2001).CrossRefGoogle Scholar
69.Thomas, B.N., Lindemann, C.M., and Clark, N.A.: Left- and right-handed tubule intermediates from pure chiral phospholipid. Phys. Rev. E: Stat. Phys. Plasmas Fluids Relat. Interdisciplin. Top. 59, 3040 (1999).CrossRefGoogle Scholar
70.Imae, T., Takahashi, T., and Muramatsu, H.: Formation of fibrous molecular assemblies by amino acid surfactants in water. J. Am. Chem. Soc. 114, 3414 (1992).CrossRefGoogle Scholar