Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-02T20:05:48.841Z Has data issue: false hasContentIssue false

Self-assembly of octadecyltrichlorosilane monolayers on mica

Published online by Cambridge University Press:  31 January 2011

George A. Carson
Affiliation:
Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801
Steve Granick
Affiliation:
Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801
Get access

Abstract

A method is described to deposit a securely attached, self-assembled monolayer of octadecyltrichlorosilane (OTS) on the surface of freshly cleaved muscovite mica. Comparison of the infrared methylene spectra with those of closely packed Langmuir-Blodgett films implies that the surface coverage of the OTS films was a fraction 0.8–0.9 that of films formed by Langmuir-Blodgett (LB) methods. However, LB monolayers are less securely attached to the substrate. The contact angle of water on these self-assembled monolayers remained over 100° for over 24 h and it suffered no noticeable degradation after prolonged reflux in cyclohexane. The method to form an OTS monolayer on mica involves three steps; first, ion exchange of the native K+ ions of cleaved mica for H+ ions; second, control of the quantity of resulting water on the mica surface; third, adsorption and surface polymerization of octadecyltrichlorosilane (OTS) by self-assembly from dilute cyclohexane solution.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Arkles, B., in Silicon Compounds Register and Review, Petrarch Systems, Briston, PA, 1987.Google Scholar
2Plueddemann, E. P., Silane Coupling Agents (Plenum Press, New York, 1982).CrossRefGoogle Scholar
3Maoz, R. and Sagiv, J., J. Coll. Interface Sci. 100, 465 (1984).CrossRefGoogle Scholar
4Tillman, N., Ulman, A., Schildkraut, J. S., and Penner, T. L., J. Am. Chem. Soc. 110, 6136 (1988).CrossRefGoogle Scholar
5Wasserman, S., Tao, Y-T., and Whitesides, G. M., Langmuir 5, 1074 (1989).CrossRefGoogle Scholar
6Gun, J., Iscovici, R., and Sagiv, J., J. Coll. Interface Sci. 101, 201 (1984).CrossRefGoogle Scholar
7Gun, J. and Sagiv, J., J. Coll. Interface Sci. 112, 457 (1986).CrossRefGoogle Scholar
8Maoz, R. and Sagiv, J., Langmuir 3, 1034 (1987).CrossRefGoogle Scholar
9Maoz, R. and Sagiv, J., Langmuir 3, 1045 (1987).CrossRefGoogle Scholar
10Netzer, L., Iscovici, R., and Sagiv, J., Thin Solid Films 99, 235 (1983).CrossRefGoogle Scholar
11Netzer, L., Iscovici, R., and Sagiv, J., Thin Solid Films 100, 67 (1983).CrossRefGoogle Scholar
12Allara, D. and Nuzzo, R., Langmuir 1, 45 (1985).CrossRefGoogle Scholar
13Allara, D. and Nuzzo, R., Langmuir 1, 52 (1985).CrossRefGoogle Scholar
14Porter, M., Bright, T., Allara, D., and Chidsy, C., J. Am. Chem. Soc. 109, 3559 (1987).CrossRefGoogle Scholar
15Bain, C. and Whitesides, G., Science 240, 62 (1988).CrossRefGoogle Scholar
16Nuzzo, R. G., Dubois, L. H., and Allara, D. L., J. Am. Chem. Soc. 112, 558 (1990).CrossRefGoogle Scholar
17Dubois, L. H., Zegarski, B. R., and Nuzzo, R. G., J. Am. Chem. Soc. 112, 570 (1990).CrossRefGoogle Scholar
18Allara, D., Hebard, A., Padden, F., Nuzzo, R., and Falcone, D., J. Vac. Sci. Technol. A 1, 376 (1983).CrossRefGoogle Scholar
19Finklea, H., Robinson, L., Blackburn, A., Richter, B., Allara, D., and Bright, T., Langmuir 2, 239 (1986).CrossRefGoogle Scholar
20DePalma, V. and Tillman, N., Langmuir 5, 868 (1989).CrossRefGoogle Scholar
21Israelachvili, J. N. and McGuiggan, P. M., Science 241, 795 (1988); and references therein.CrossRefGoogle Scholar
22Israelachvili, J., McGuiggan, P., and Homola, A., Science 240, 189 (1988).CrossRefGoogle Scholar
23Van Alsten, J. and Granick, S., Phys. Rev. Lett. 61, 2570 (1988).CrossRefGoogle Scholar
24Kingery, W., Bowen, H., and Uhlmann, D., Introduction to Ceramics (John Wiley and Sons, New York, 1976), 2nd ed., Chap. 2, pp. 7780.Google Scholar
25Claesson, P., Blom, C., Herder, P., and Ninham, B., J. Coll. Interface Sci. 114, 234 (1986).CrossRefGoogle Scholar
26Carson, G. A. and Granick, S., J. Appl. Polym. Sci. 37, 2767 (1989).CrossRefGoogle Scholar
27Carson, G. A., Thesis, M. S., University of Illinois at Urbana-Champaign, 1989.Google Scholar
28Parker, J., Cho, D., and Claesson, P., J. Phys. Chem. 93 6121 (1989).CrossRefGoogle Scholar
29Carson, G. A. and Granick, S., Appl. Spectrosc. 43, 473 (1989)CrossRefGoogle Scholar
30Harrick, N. J., Appl. Spectrosc. 31, 548 (1977).CrossRefGoogle Scholar
31Raussel-Colom, J. and Serratosa, J., “Reactions of Clays with Organic Substances,” in Chemistry of Clays and Clay Minerals, edit by Newman, A. (Wiley-Interscience, New York, 1987), Chap. 8, pp. 374422.Google Scholar
32 We are not yet able to determine the thickness of the resulting film of water. Normally ellipsometry would be the obvious candi date to answer such a question; however, it happens (Nuzzo, R., private communication) that, owing to mica's low reflectivity and anisotropic optical properties, ellipsometry is inapplicable to studying mica.Google Scholar
33Morra, M., Occhielo, E., and Garbassi, F., Langmuir 5, 872 (1989); and references therein.CrossRefGoogle Scholar
34Blodgett, K. B. and Langmuir, I., Phys. Rev. 51, 964 (1937).CrossRefGoogle Scholar
35Snyder, R. G., Maroncelli, M., Strauss, H. L., and Hallmark, V. M., J. Phys. Chem. 90, 5623 (1986).CrossRefGoogle Scholar
36Kim, Y., Strauss, H. L., and Snyder, R. G., J. Phys. Chem. 93, 485 (1989).CrossRefGoogle Scholar