Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-28T01:44:25.679Z Has data issue: false hasContentIssue false

Self-assembly of P22 protein cages with polyamidoamine dendrimer and inorganic nanoparticles

Published online by Cambridge University Press:  05 December 2016

Soubantika Palchoudhury*
Affiliation:
Department of Civil & Chemical Engineering, University of Tennessee at Chattanooga, Chattanooga, Tennessee 37403
Ziyou Zhou
Affiliation:
Center for Materials for Information Technology, The University of Alabama, Tuscaloosa, Alabama 35487
Karthik Ramasamy*
Affiliation:
Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Albuquerque, New Mexico 87185
Franklin Okirie
Affiliation:
Department of Chemical & Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487
Peter E. Prevelige*
Affiliation:
Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294
Arunava Gupta*
Affiliation:
Center for Materials for Information Technology, The University of Alabama, Tuscaloosa, Alabama 35487; and Department of Chemical & Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487
*
a) Address all correspondence to these authors. e-mail: soubantika-palchoudhury@utc.edu
b) e-mail: kramasamy@lanl.gov
c) e-mail: prevelig@uab.edu
d) e-mail: agupta@mint.ua.edu
Get access

Abstract

Protein cage based nanoarchitectures hold great potential in the fields of energy, catalysis, and bio-applications owing to their ability to tune material’s properties in a benign biomimetic approach. We demonstrate the self-assembly of bacteriophage P22 using inorganic nanoparticles and dendrimers for the first time. Inorganic nanoparticles (iron oxide, CoFe2O4, and Au) and polyamidoamine serve as model systems for rigid and soft linker materials, respectively, to induce P22 assembly via electrostatic interaction. We observed distinctly different packing of P22 using nanoparticles as compared to the polyamidoamine polymer. Notably, the ratio of nanoparticle: P22 and ligand packing on the nanoparticle surface are dominant controls for this assembly. The best results are obtained at 6.5:1 nanoparticle:P22 number ratio in the presence of 50 mM NaCl, pH = 6. In contrast, dense area assembly of P22 is observed at 8:1 polyamidoamine:P22 number ratio with 1 M NaCl (pH ∼ 7.5) for the dendrimer.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ramasamy, K. and Gupta, A.: Routes to self-assembly of nanorods. J. Mater. Res. 28(13), 1761 (2013).CrossRefGoogle Scholar
Zhou, Z., Bedwell, G.J., Li, R., Bao, N., Prevelige, P.E., and Gupta, A.: P22 virus-like particles constructed Au/CdS plasmonic photocatalytic nanostructures for enhanced photoactivity. Chem. Commun. 51(6), 1062 (2015).CrossRefGoogle ScholarPubMed
Yoo, P.J., Nam, K.T., Qi, J.F., Lee, S.K., Park, J., Belcher, A.M., and Hammond, P.T.: Spontaneous assembly of viruses on multilayered polymer surfaces. Nat. Mater. 5(3), 234 (2006).CrossRefGoogle ScholarPubMed
Bronstein, L.M.: Virus-based nanoparticles with inorganic cargo: What does the future hold? Small 7(12), 1609 (2011).CrossRefGoogle ScholarPubMed
Glasgow, J. and Tullman-Ercek, D.: Production and applications of engineered viral capsids. Appl. Microbiol. Biotechnol. 98(13), 5847 (2014).CrossRefGoogle Scholar
Smith, M.T., Hawes, A.K., and Bundy, B.C.: Reengineering viruses and virus-like particles through chemical functionalization strategies. Curr. Opin. Biotechnol. 24(4), 620 (2013).CrossRefGoogle ScholarPubMed
Courchesne, N-M.D., Klug, M.T., Chen, P-Y., Kooi, S.E., Yun, D.S., Hong, N., Fang, N.X., Belcher, A.M., and Hammond, P.T.: Assembly of a bacteriophage-based template for the organization of materials into nanoporous networks. Adv. Mater. 26(21), 3398 (2014).CrossRefGoogle ScholarPubMed
Zhou, Z., Bedwell, G.J., Li, R., Prevelige, P.E., and Gupta, A.: Formation mechanism of chalcogenide nanocrystals confined inside genetically engineered virus-like particles. Sci. Rep. 4, 3822 (2014).Google ScholarPubMed
Parent, K.N., Khayat, R., Tu, L.H., Suhanovsky, M.M., Cortines, J.R., Teschke, C.M., Johnson, J.E., and Baker, T.S.: P22 coat protein structures reveal a novel mechanism for capsid maturation: Stability without auxiliary proteins or chemical crosslinks. Structure 18(3), 390 (2010).CrossRefGoogle ScholarPubMed
Prevelige, P.E., Thomas, D., and King, J.: Scaffolding protein regulates the polymerization of P22 coat subunits into icosahedral shells in vitro. J. Mol. Biol. 202(4), 743 (1988).CrossRefGoogle ScholarPubMed
Morris, D.S. and Prevelige, P.E.: The role of the coat protein A-domain in P22 bacteriophage maturation. Viruses 6(7), 2708 (2014).CrossRefGoogle ScholarPubMed
Uchida, M., LaFrance, B., Broomell, C., Prevelige, P.E., and Douglas, T.: Higher order assembly of virus-like particles (VLPs) mediated by multi-valent protein linkers. Small 11(13), 1562 (2015).CrossRefGoogle ScholarPubMed
Tahka, S., Laiho, A., and Kostiainen, M.A.: Diblock-copolymer-mediated self-assembly of protein-stabilized iron oxide nanoparticle clusters for magnetic resonance imaging. Chem.–Eur. J. 20(10), 2718 (2014).CrossRefGoogle ScholarPubMed
Kostiainen, M.A., Hiekkataipale, P., de la Torre, J.A., Noltea, R.J.M., and Cornelissen, J.J.L.M.: Electrostatic self-assembly of virus—Polymer complexes. J. Mater. Chem. 21(7), 2112 (2010).CrossRefGoogle Scholar
Kostiainen, M.A., Hiekkataipale, P., Laiho, A., Lemieux, V., Seitsonen, J., Ruokolainen, J., and Ceci, P.: Electrostatic assembly of binary nanoparticle superlattices using protein cages. Nat. Nanotechnol. 8(1), 52 (2013).CrossRefGoogle ScholarPubMed
Liljestrom, V., Mikkila, J., and Kostiainen, M.A.: Self-assembly and modular functionalization of three-dimensional crystals from oppositely charged proteins. Nat. Commun. 5, 4445 (2014).CrossRefGoogle ScholarPubMed
Shen, L., Bao, N., Prevelige, P.E., and Gupta, A.: Fabrication of ordered nanostructures of sulfide nanocrystal assemblies over self-assembled genetically engineered P22 coat protein. J. Am. Chem. Soc. 132(49), 17354 (2010).CrossRefGoogle ScholarPubMed
Lanman, J., Tuma, R., and Prevelige, P.E.: Identification and characterization of the domain structure of bacteriophage P22 coat protein. Biochemistry 38(44), 14614 (1999).CrossRefGoogle ScholarPubMed
Kale, A., Bao, Y.P., Zhou, Z.Y., Prevelige, P.E., and Gupta, A.: Directed self-assembly of CdS quantum dots on bacteriophage P22 coat protein templates. Nanotechnology 24(4), 045603 (2013).CrossRefGoogle ScholarPubMed
Bao, N., Shen, L., An, W., Padhan, P., Turner, C.H., and Gupta, A.: Formation mechanism and shape control of monodisperse magnetic CoFe2O4 nanocrystals. Chem. Mater. 21(14), 3458 (2009).CrossRefGoogle Scholar
Bao, N., Shen, L., Wang, Y.H.A., Ma, J.X., Mazumdar, D., and Gupta, A.: Controlled growth of monodisperse self-supported superparamagnetic nanostructures of spherical and rod-like CoFe2O4 nanocrystals. J. Am. Chem. Soc. 131(36), 12900 (2009).CrossRefGoogle ScholarPubMed
Palchoudhury, S., Hyder, F., Vanderlick, T.K., and Geerts, N.: Water-soluble anisotropic iron oxide nanoparticles: Dextran-coated crystalline nanoplates and nanoflowers. Part. Sci. Technol. 32(3), 224 (2014).CrossRefGoogle Scholar
Bastus, N.G., Comenge, J., and Puntes, V.: Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: Size focusing versus ostwald ripening. Langmuir 27(17), 11098 (2011).CrossRefGoogle ScholarPubMed
Uchida, M., Morris, D.S., Kang, S., Jolley, C.C., Lucon, J., Liepold, L.O., LaFrance, B., Prevelige, P.E., and Douglas, T.: Site-directed coordination chemistry with P22 virus-like particles. Langmuir 28(4), 1998 (2012).CrossRefGoogle ScholarPubMed
Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., and Ferrin, T.E.: UCSF chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 25(13), 1605 (2004).CrossRefGoogle ScholarPubMed
Dolinsky, T.J., Nielsen, J.E., McCammon, J.A., and Baker, N.A.: PDB2PQR: An automated pipeline for the setup of Poisson–Boltzmann electrostatics calculations. Nucleic Acids Res. 32(2), W665 (2004).CrossRefGoogle ScholarPubMed
Janner, A.: Comparative architecture of octahedral protein cages. I. Indexed enclosing forms. Acta Crystallogr. A 64(4), 494 (2008).CrossRefGoogle ScholarPubMed
Xu, Y., Qin, Y., Palchoudhury, S., and Bao, Y.: Water soluble iron oxide nanoparticles with high stability and selective surface functionality. Langmuir 27(14), 8990 (2011).CrossRefGoogle ScholarPubMed
Mikkila, J., Rosilo, H., Nummelin, S., Seitsonen, J., Ruokolainen, J., and Kostiainen, M.A.: Janus-dendrimer-mediated formation of crystalline virus assemblies. ACS Macro Lett. 2(8), 720 (2013).CrossRefGoogle ScholarPubMed
Yang, M., Wang, J., Zhu, Y., and Mao, C.: Bio-templated growth of bone minerals from modified simulated body fluid on nanofibrous decellularized natural tissues. J. Biomed. Nanotechnol. 12(4), 753 (2016).CrossRefGoogle ScholarPubMed
Glover, D., Giger, L., Kim, S., Naik, R., and Clark, D.: Geometrical assembly of ultrastable protein templates for nanomaterials. Nat. Commun. 7, 11771 (2016).CrossRefGoogle ScholarPubMed
Supplementary material: File

Palchoudhury supplementary material

Palchoudhury supplementary material 1

Download Palchoudhury supplementary material(File)
File 2.1 MB