Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-05T02:21:44.650Z Has data issue: false hasContentIssue false

A self-constraint strengthening mechanism and its application to seashells

Published online by Cambridge University Press:  03 March 2011

X.F. Yang
Affiliation:
Materials Engineering, Auburn University, Alabama 36849-5351
Get access

Abstract

A self-constraint strengthening mechanism for multilayered brittle materials is proposed. The strengthening is a result of the self-constraint of the individual layers on each other, and no additional reinforcements are needed. The proposed model predicts that when individual brittle layers are stacked and properly “glued” together with a weak interphase, each layer will be ensured a minimum tensile strength, regardless of the flaw size in the individual layers. Estimation of the minimum strength using this model yields an apparently close agreement with the measured values for one type of nacreous structure reported in the literature. It is also predicted that low-strength ceramic sheets, which might be produced by some low-cost fabrication techniques, can be used to construct high strength man-made nacreous ceramics.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Abbott, R. T. and Dance, S. P., Compendium of Seasheiis (E. P. Dutton, Inc., New York, 1983), p. 1.Google Scholar
2Boggild, O. B., K. Dan. Vidensk. Selsk. Skr. 2, 232 (1930).Google Scholar
3Taylor, J. D., Kennedy, W. J., and Hall, A., Bull. Br. Mus. Nat. His. Zool, Suppl. 3, 1 (1969).Google Scholar
4Taylor, J. D., Kennedy, W. J., and Hall, A., Bull. Br. Mus. Nat. His. 22, 255 (1973).Google Scholar
5Erben, H. K., Biomineralisation 4, 14 (1972).Google Scholar
6Mutvei, H., Biomineralisation 2, 49 (1970).Google Scholar
7Currey, J. D., Proc. R. Soc. London 196B, 443 (1977).Google Scholar
8Jackson, A. P., Vincent, J. F., and Turner, R.M., Proc. R. Soc. London 234B, 415 (1988).Google Scholar
9Sarikaya, M. and Aksay, I. A., in Results and Problems in Cell Differentiation: Biopolymers, edited by Case, S.T. (Springer-Verlag, Berlin, Heidelberg, 1992), Vol. 19, p. 1.Google Scholar
10Sarikaya, M. and Aksay, I. A., in Chemical Processing of Advanced Materials, edited by Hench, L. L. and West, J. K. (John Wiley and Sons, Inc., New York, 1992), p. 543.Google Scholar
11Sarikaya, M., Gunnison, K. E., Yasrebi, M., and Aksay, I. A., in Materials Synthesis Utilizing Biological Processes, edited by Rieke, P. C., Calvert, P. D., and Alper, M. (Mater. Res. Soc. Symp. Proc. 174, Pittsburgh, PA, 1990), p. 109.Google Scholar
12Aveston, J., Cooper, G. A., and Kelly, A., in The Properties of Fibre Composites (IPC Science and Technology Press, Guildford, U.K., 1972), p. 15.Google Scholar
13Griffith, A. A., Philos. Trans. R. Soc. London 221A, 163 (1920).Google Scholar
14Marshall, D. B., Cox, B. N., and Evans, A. G., Acta Metall. 33, 2013 (1985).CrossRefGoogle Scholar
15McCartney, L.N., Proc. R. Soc. London 409A, 329 (1987).Google Scholar
16Hu, M. S. and Evans, A. G., Acta Metall. 37, 917 (1989).CrossRefGoogle Scholar
17Weibull, W., J. Appl. Mech. 18, 293 (1951).CrossRefGoogle Scholar
18Coleman, B. D., J. Mech. Phys. Solids 7, 60 (1958).CrossRefGoogle Scholar
19Clegg, W. J., Kendall, K., Alford, N. M., Button, T. W., and Birchall, J. D., Nature (London) 347, 455 (1990).CrossRefGoogle Scholar
20Marshall, D. B., Ratto, J. J., and Lange, F. F., J. Am. Ceram. Soc. 74, 2979 (1991).CrossRefGoogle Scholar
21Simon, G. and Bunsell, A. R., J. Mater. Sci. 19, 3649 (1984).CrossRefGoogle Scholar