Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-04T01:40:39.092Z Has data issue: false hasContentIssue false

Self-organized nanotubular layer on Ti–4Zr–22Nb–2Sn alloys formed in organic electrolytes

Published online by Cambridge University Press:  31 January 2011

Yanqin Liang
Affiliation:
School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
Xianjin Yang
Affiliation:
School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China; and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072, China
Zhenduo Cui
Affiliation:
School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
Shengli Zhu*
Affiliation:
School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China; and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072, China
*
a) Address all correspondence to this author. e-mail: slzhu@tju.edu.cn
Get access

Abstract

Self-organized nanotubular layers are electrochemically fabricated on Ti–4Zr–22Nb–2Sn alloys in water/glycerol (volume ratio 1:1) mixtures containing 0.3 M NH4F. Highly ordered nanotubes with two distinct diameters of ∼203 ± 5 (large size) and 113 ± 5 nm (small size) were observed at the bottom of the layer, which may be ascribed to the different microstructure and composition in this alloy. On extended anodization, the small-size tubes gradually disappeared because of the increasing H+. After annealing for 1 h at 500 °C, the nanotube layer on the Ti–4Zr–22Nb–2Sn alloy was transformed from the amorphous phase to anatase. The nanotubes were connected to each other by spaced rings at the sidewalls, whereas the distance between neighboring rings increased with the amplitude of applied current density.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Zhao, J., Wang, X., Chen, R., and Li, L.: Fabrication of titanium oxide nanotube arrays by anodic oxidation. Solid State Commun. 134, 705 (2005).CrossRefGoogle Scholar
2.Macak, J.M., Tsuchiya, H., and Schmuki, P.: High-aspect-ratio TiO2 nanotubes by anodization of titanium. Angew Chem. Int. Ed. 44, 2100 (2005).CrossRefGoogle ScholarPubMed
3.Tsuchiya, H., Macak, J.M., Taveira, L., Balaur, E., Ghicov, A., Sirotna, K., and Schmuki, P.: Self-organized TiO2 nanotubes prepared in ammonium fluoride containing acetic acid electrolytes. Electrochem. Commun. 7, 576 (2005).CrossRefGoogle Scholar
4.Ghicov, A., Tsuchiya, H., Macak, J.M., and Schmuki, P.: Titanium oxide nanotubes prepared in phosphate electrolytes. Electrochem. Commun. 7, 505 (2005).CrossRefGoogle Scholar
5.Tsuchiya, H., Macak, J.M., Taveira, L., and Schmuki, P.: Fabrication and characterization of smooth high aspect ratio zirconia nanotubes. Chem. Phys. Lett. 410, 188 (2005).CrossRefGoogle Scholar
6.Tsuchiya, H. and Schmuki, P.: Self-organized high aspect ratio porous hafnium oxide prepared by electrochemical anodization. Electrochem. Commun. 7, 49 (2005).CrossRefGoogle Scholar
7.Sieber, I., Kannan, B., and Schmuki, P.: Self-assembled porous tantalum oxide prepared in H2SO4/HF electrolytes. Electrochem. Solid-State Lett. 8, J10 (2005).CrossRefGoogle Scholar
8.Sieber, I.V. and Schmuki, P.: Porous tantalum oxide prepared by electrochemical anodic oxidation. J. Electrochem. Soc. 152, C639 (2005).CrossRefGoogle Scholar
9.Sieber, I., Hildebrand, H., Friedrich, A., and Schmuki, P.: Formation of self-organized niobium porous oxide on niobium. Electrochem. Commun. 7, 97 (2005).CrossRefGoogle Scholar
10.Tsuchiya, H., Macak, J.M., Müller, L., Kunze, J., Müller, F., Greil, P., Virtanen, S., and Schmuki, P.: Hydroxyapatite growth on anodic TiO2 nanotubes. Biomed. Mater. Res. A 77, 534 (2006).CrossRefGoogle ScholarPubMed
11.Niinomi, M.: Mechanical properties of biomedical titanium alloys. Mater. Sci. Eng., A 6, 231 (1998).CrossRefGoogle Scholar
12.Tsuchiya, H., Macak, J.M., Ghicov, A., Tang, Y.C., Fujimoto, S., Niinomi, M., Noda, T., and Schmuki, P.: Nanotube oxide coating on Ti–29Nb–13Ta–4.6Zr alloy prepared by self-organizing anodization. Electrochim. Acta 52, 94 (2006).CrossRefGoogle Scholar
13.Feng, X.J., Macak, J.M., and Schmuki, P.: Flexible self-organization of two size-scales oxide nanotubes on Ti45Nb alloy. Electrochem. Commun. 9, 2403 (2007).CrossRefGoogle Scholar
14.Tsuchiya, H., Akaki, T., Nakata, J., Terada, D., Tsuji, N., Koizumi, Y., Minamino, Y., Schmuki, P., and Fujimoto, S.: Anodic oxide nanotube layers on Ti–Ta alloys: Substrate composition, microstructure and self-organization on two-size scales. Corros. Sci. 51, 1528 (2009).CrossRefGoogle Scholar
15.Feng, X.J., Macak, J.M., Albu, S.P., and Schmuki, P.: Electrochemical formation of self-organized anodic nanotube coating on Ti–28Zr–8Nb biomedical alloy surface. Acta Biomater. 4, 318 (2008).CrossRefGoogle ScholarPubMed
16.Tsuchiya, H., Macak, J.M., Ghicov, A., and Schmuki, P.: Self-organization of anodic nanotubes on two size scales. Small 2, 888 (2006).CrossRefGoogle ScholarPubMed
17.Macak, J.M., Sirotna, K., and Schmuki, P.: Self-organized porous titanium oxide prepared in Na2SO4/NaF electrolytes. Electrochim. Acta 50, 3679 (2005).CrossRefGoogle Scholar
18.Cai, Q.Y., Paulose, M., Varghese, O.K., and Grimes, C.A.: The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation. J. Mater. Res. 20, 230 (2005).CrossRefGoogle Scholar
19.Paulose, M., Shankar, K., Yoriya, S., Prakasam, H.E., Varghese, O.K., Mor, G.K., Latempa, T.A., Fitzgerald, A., and Grimes, C.A.: Anodic growth of highly ordered TiO2 nanotube arrays to 134 micrometer in length. J. Phys. Chem. B 110, 16179 (2006).CrossRefGoogle Scholar
20.Macak, J.M., Hildebrand, H., Marten-Jahns, U., and Schmuki, P.: Mechanistic aspects and growth of large diameter self-organized TiO2 nanotubes. J. Electroanal. Chem. 621, 254 (2008).CrossRefGoogle Scholar
21.Matsumoto, H., Watanabe, S., Masahashi, N., and Hanada, S.J.: Composition dependence of Young's modulus in Ti-V, Ti-Nb, and Ti-V-Sn alloys. Metall. Mater. Trans. A 37, 3239 (2006).CrossRefGoogle Scholar
22.Tsuchiya, H., Macak, J. M., Sieber, I., and Schmuki, P.: Self-organized high-aspect-ratio nanoporous zirconium oxides prepared by electrochemical anodization. Small 7, 722 (2005).CrossRefGoogle Scholar
23.Yasuda, K. and Schmuki, P.: Formation of self-organized zirconium titanate nanotube layers by alloy anodization. Adv. Mater. 19, 1757 (2007).CrossRefGoogle Scholar
24.Taveira, L.V., Macak, J.M., Tsuchiya, H., Dick, L.F.P., and Schmuki, P.: Initiation and growth of self-organized TiO2 nanotubes anodically formed in NH4F/ (NH4)2SO4 electrolytes. Electrochem. Soc. 152, B405 (2005).CrossRefGoogle Scholar
25.Beranek, R., Hildebrand, H., and Schmuki, P.: Self-organized porous titanium oxide prepared in H2SO4/HF electrolytes. Electrochem. Solid-State Lett. 6, B12 (2003).CrossRefGoogle Scholar
26.Tsuchiya, H., Macak, J.M., Taveira, L., Balaur, E., Ghicov, A., Sirotna, K., and Schmuki, P.: Self-organized TiO2 nanotubes prepared in ammonium fluoride containing acetic acid electrolytes. Electrochem. Commun. 7, 576 (2005).CrossRefGoogle Scholar
27.Macak, J.M., Tsuchiya, H., Taveira, L., Aldabergerova, S., and Schmuki, P.: Smooth anodic TiO2 nanotubes. Angew Chem. Int. Ed. 44, 7463 (2005).CrossRefGoogle ScholarPubMed
28.Mohapatra, S.K., Raja, K.S., Misra, M., Mahajan, V.K., and Ahmadian, M.: Synthesis of self-organized mixed oxide nanotubes by sonoelectrochemical anodization of Ti–8Mn alloy. Electrochim. Acta 53, 590 (2007).CrossRefGoogle Scholar