Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-15T02:42:58.393Z Has data issue: false hasContentIssue false

Shape-memory NiTi–Nb foams

Published online by Cambridge University Press:  31 January 2011

Ampika Bansiddhi*
Affiliation:
Department of Materials Engineering, Kasetsart University, Bangkok 10900, Thailand
David C. Dunand
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208
*
a) Address all correspondence to this author. e-mail: ampikaa@gmail.com
Get access

Abstract

A new powder metallurgy technique for creating porous NiTi is demonstrated, combining liquid phase sintering of prealloyed NiTi powders by Nb additions and pore creation by NaCl space-holders. The resulting foams exhibit well-densified NiTi–Nb walls surrounding interconnected pores created by the space-holder, with controlled fraction, size, and shape. Only small amounts of Nb (3 at.%) are needed to produce a eutectic liquid that considerably improves the otherwise poor densification of NiTi powders. NiTi–Nb foams with 34–44% porosity exhibit high compressive failure stress (>1,500 MPa), ductile behavior (>50% compressive strain), low stiffness (10–20 GPa), and large shape-memory recovery strains. These thermomechanical properties, together with the known biocompatibility of the alloy, make these open-cell foams attractive for bone implant applications.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

l. Otsuka, K. and Wayman, C.M.: Shape Memory Materials (Cambridge University Press, Cambridge, UK, 1998), p. 284.Google Scholar
2Li, B.Y., Rong, L.J., and Li, Y.Y.: Stress-strain behavior of porous Ni–Ti shape memory intermetallics synthesized from powder sintering. Intermetallics 8, 643 (2000).CrossRefGoogle Scholar
3Zhu, S.L., Yang, X.J., Hu, F., Deng, S.H., and Cui, Z.D.: Processing of porous TiNi shape memory alloy from elemental powders by Ar-sintering. Mater. Lett. 58, 2369 (2004).CrossRefGoogle Scholar
4Arciniegas, M., Aparicio, C., Manero, J.M., and Gil, F.J.: Low elastic modulus metals for joint prosthesis: Tantalum and nickel-titanium foams. J. Eur. Ceram. Soc. 27, 3391 (2007).CrossRefGoogle Scholar
5Chu, C.L., Chung, C.Y., Lin, P.H., and Wang, S.D.: Fabrication of porous NiTi shape memory alloy for hard tissue implants by combustion synthesis. Mater. Sci. Eng., A 366, 114 (2004).CrossRefGoogle Scholar
6Li, B.Y., Rong, L.J., Li, Y.Y., and Gjunter, V.E.: Fabrication of cellular NiTi intermetallic compounds. J. Mater. Res. 15, 10 (2000).CrossRefGoogle Scholar
7Yuan, B., Zhu, M., Gao, Y., Li, X., and Chung, C.Y.: Forming and control of pores by capsule-free hot isostatic pressing in NiTi shape memory alloys. Smart Mater. Struct. 17, 025013 (2008).CrossRefGoogle Scholar
8Greiner, C., Oppenheimer, S.M., and Dunand, D.C.: High strength, low stiffness, porous NiTi with superelastic properties. Acta Bio-mater. 1, 705 (2005).CrossRefGoogle ScholarPubMed
9Lagoudas, D.C. and Vandygriff, E.L.: Processing and characterization of NiTi porous SMA by elevated pressure sintering. J. Intell. Mater. Syst. Struct. 13, 837 (2002).CrossRefGoogle Scholar
10Sugiyama, M., Hyun, S.K., Tane, M., and Nakajima, H.: Fabrication of lotus-type porous NiTi shape memory alloys using the continuous zone melting method and tensile property. High Temp. Mater. Processes 26, 297 (2007).CrossRefGoogle Scholar
11Kohl, M., Bram, M., Buchkremer, P., Stover, D., Habijan, T., and Koller, M.: Production of Highly Porous Near-Net-Shape NiTi Components for Biomedical Applications (Porous Metals and Metallic Foams Conference, Montreal, QC, Canada, 2007), p. 295.Google Scholar
12Bansiddhi, A. and Dunand, D.C.: Shape-memory NiTi foams produced by replication of NaCl sapce-holders. Acta Biomater. 4, 1996 (2008).CrossRefGoogle Scholar
13Bansiddhi, A. and Dunand, D.: Shape-memory NiTi foams produced by solid-state replication with NaF. Intermetallics 15, 1612 (2007).CrossRefGoogle Scholar
14Zhang, Y.P., Li, D.S., and Zhang, X.P.: Gradient porosity and large pore size NiTi shape memory alloys. Scr. Mater. 57, 1020 (2007).CrossRefGoogle Scholar
15Zhang, Y.P., Yuan, B., Zeng, M.Q., Chung, C.Y., and Zhang, X.P.: High porosity and large pore size shape memory alloys fabricated by using pore-forming agent (NH4HCO3) and capsule-free hot isostatic pressing. J. Mater. Process. Technol. 192, 439 (2007).CrossRefGoogle Scholar
16Bobyn, J.D., Pilliar, R.M., Cameron, H.U., and Weatherly, G.C.: The optimum pore-size for the fixation of porous-surfaced metal implants by the ingrowth of bone. Clin. Orthop. Relat. Res. 150, 263 (1980).CrossRefGoogle Scholar
17Bram, M., Ahmad-Khanlou, A., Heckmann, A., Fuchs, B., Buchkremer, H.P., and Stover, D.: Powder metallurgical fabrication processes for NiTi shape memory alloy parts. Mater. Sci. Eng., A 337, 254 (2002).CrossRefGoogle Scholar
18Locci, A.M., Orru, R., Cao, G., and Munir, Z.A.: Field-activated pressure-assisted synthesis of NiTi. Intermetallics 11, 555 (2003).CrossRefGoogle Scholar
19Yuan, B., Zhang, X.P., Chung, C.Y., Zeng, M.Q., and Zhu, M.: A comparative study of the porous TiNi shape-memory alloys fabricated by three different processes. Metall. Mater. Trans. A 37, 755 (2006).CrossRefGoogle Scholar
20Queheillalt, D.T., Katsumura, Y., and Wadley, H.N.G.: Synthesis of stochastic open cell Ni-based foams. Scr. Mater. 50, 313 (2004).CrossRefGoogle Scholar
21Queheillalt, D.T., Hass, D.D., Sypeck, D.J., and Wadley, H.N.G.: Synthesis of open-cell metal foams by templated directed vapor deposition. J. Mater. Res. 16, 1028 (2001).CrossRefGoogle Scholar
22Quadbeck, P., Kaschta, J., and Singer, R.F.: Superalloy IN625 with cellular microstructure: Fabrication route and mechanical properties. Adv. Eng. Mater. 6, 635 (2004).CrossRefGoogle Scholar
23Yang, T.Y., Shiue, R.K., and Wu, S.K.: Infrared brazing of Ti50Ni50 shape memory alloy using pure Cu and Ti–15Cu–15Ni foils. Intermetallics 12, 1285 (2004).CrossRefGoogle Scholar
24Eijk, C. van der, Sallom, Z.K., and Akselsen, O.M.: Microwave brazing of NiTi shape with Ag–Ti and Ag–Cu–Ti memory alloy alloys. Scr. Mater. 58, 779 (2008).CrossRefGoogle Scholar
25Grummon, D.S., Shaw, J.A., and Foltz, J.: Fabrication of cellular shape memory alloy materials by reactive eutectic brazing using niobium. Mater. Sci. Eng., A 438, 1113 (2006).CrossRefGoogle Scholar
26Shaw, J.A., Grummon, D.S., and Foltz, J.: Superelastic NiTi honeycombs: Fabrication and experiments. Smart Mater. Struct. 16, S170 (2007).CrossRefGoogle Scholar
27Reed, T.B.: Free Energy of Formation of Binary Compounds: An Atlas of Charts for High-Temperature Chemical Calculations (The MIT Press, Cambridge, MA, 1971), p. 81.Google Scholar
28Yang, H.B., Ying, W.H., Yang, Z.P., Lin, J.Y., Zhang, X.M., and Guo, J.H.: Product microstructure of Ti-Ni-Nb shape memory alloy (SMA) by high-temperature synthesis (SHS) of self-propagating. Rare Metal Mater. Eng. 31, 152 (2002).Google Scholar
29Abramov, V.Y., Aleksandrova, N.M., Borovkov, D.V., Makushev, S.Y., Polyakova, N.A., Popov, N.N., Prokoshkin, S.D., and Khmelevskaya, I.Y.: Structure and functional properties of heat-and thermomechanically treated Ti–Ni–Nb-based alloys with a wide martensitic hysteresis. I. Ti–Ni–Nb ternary alloys. Phys. Met. Metallogr. 101, 404 (2006).CrossRefGoogle Scholar
30He, X.M., Rong, L.J., Yan, D.S., Jiang, Z.M., and Li, Y.Y.: Study of the Ni41.3Ti38.7Nb20 wide transformation hysteresis shape-memory alloy. Metall. Mater. Trans. A 35, 2783 (2004).CrossRefGoogle Scholar
31He, X.M., Rong, L.J., Yan, D.S., and Li, Y.Y.: TiNiNb wide hysteresis shape memory alloy with low niobium content. Mater. Sci. Eng., A 371, 193 (2004).CrossRefGoogle Scholar
32Uchida, K., Shigenaka, N., Sakuma, T., Sutou, Y., and Yamauchi, K.: Effect of Nb content on martensitic transformation temperatures and mechanical properties of Ti–Ni–Nb shape memory alloys for pipe joint applications. Mater. Trans. 48, 445 (2007).CrossRefGoogle Scholar
33Udovenko, V.A., Potapov, P.L., Prokoshkin, S.D., Khmelevskaya, I.Y., Abramov, V.Y., and Blinov, Y.V.: A study of the functional properties of alloy Ti–45% Ni–10% Nb with wide hysteresis of the martensitic transformation. Metal Sci. Heat Treat. 42, 353 (2000).CrossRefGoogle Scholar
34Hashi, K., Ishikawa, K., Matsuda, T., and Aoki, K.: Microstructures and hydrogen permeability of Nb–Ti–Ni alloys with high resistance to hydrogen embrittlement. Mater. Trans. 46, 1026 (2005).CrossRefGoogle Scholar
35Kishida, K., Yamaguchi, Y., Tanaka, K., Inui, H., Tokui, S., Ishikawa, K., and Aoki, K.: Microstructures and hydrogen permeability of directionally solidified Nb–Ni–Ti alloys with the Nb–NiTi eutectic microstructure. Intermetallics 16, 88 (2008).CrossRefGoogle Scholar
36Luo, W., Ishikawa, K., and Aoki, K.: High hydrogen permeability in the Nb-rich Nb–Ti–Ni alloy. J. Alloys Compd. 407, 115 (2006).CrossRefGoogle Scholar
37Duerig, T., Stockel, D., and Burpee, J.: Stent. U.S. Patent No. US 6 312 455 B2 (2001).Google Scholar
38Takagi, T., Sutou, Y., Kainuma, R., Yamauchi, K., and Ishida, K.: Effect of prestrain on martensitic transformation in a Ti46.4Ni47.6Nb6.0 superelastic alloy and its application to medical stents. J. Biomed. Mater. Res. B Appl. Biomater. 76, 179 (2006).CrossRefGoogle Scholar
39Li, C., Zheng, Y.F., and Zhao, L.C.: Electrochemical corrosion behaviour of Ti44Ni47Nb9 alloy in simulated body fluids. Mater. Sci. Eng., A 438, 504 (2006).CrossRefGoogle Scholar
40Matsuno, H., Yokoyama, A., Watari, F., Uo, M., and Kawasaki, T.: Biocompatibility and osteogenesis of refractory metal implants, titanium, hafnium, niobium, tantalum and rhenium. Biomaterials 22, 1253 (2001).CrossRefGoogle ScholarPubMed
41Jackson, C.M., Wagner, H.J., and Wasilewski, R.J.: 55-Nitinol–The Alloy with a Memory: Its Physical Metallurgy, Properties, and Applications (National Aeronautics and Space Administration, Washington, DC, 1972).Google Scholar
42Prima, S.B., Tretyachenko, L.A., and Petyukh, V.M.: Phase relations in the Ti–TiNi–NbNi–Nb region of the ternary system Ti–Nb–Ni. Powder Metall. Met. Ceram. 34, 155 (1995).CrossRefGoogle Scholar
43Piao, M., Miyazaki, S., Otsuka, K., and Nishida, N.: Effects of Nb addition on the microstructure of Ti–Ni alloys. Mater. Trans., JIM 33, 337 (1992).CrossRefGoogle Scholar
44Siegert, W., Neuking, K., Mertmann, M., and Eggeler, G.: Influence of Nb content and processing conditions on microstructure and functional properties of NiTiNb shape-memory alloys. Mater. Sci. Forum 394-3, 361 (2001).Google Scholar
45Matsumoto, S., Tokunaga, T., Ohtani, H., and Hasebe, M.: Thermodynamic analysis of the phase equilibria of the Nb–Ni–Ti system. Mater. Trans. 46, 2920 (2005).CrossRefGoogle Scholar
46Zhang, C.S., Wang, Y.Q., Chai, W., and Zhao, L.C.: The study of constitutional phases in a Ni47Ti44Nb9 shape memory alloy. Mater. Chem. Phys. 28, 43 (1991).CrossRefGoogle Scholar
47Zhao, L.C., Duerig, T.W., Justi, S., Melton, K.N., Proft, J.L., Yu, W., and Wayman, C.M.: The study of niobium-rich precipitates in a Ni–Ti–Nb shape memory alloy. Scr. Metall. Mater. 24, 221 (1990).CrossRefGoogle Scholar
48Jia, D., Liu, W.X., Dong, Z.Z., Yu, S.J., Zhang, Q., Wang, D.F., and Liu, D.Z.: Precipitations in a Ni Ti–Nb alloy during annealing. Prog. Nat. Sci. 9, 216 (1999).Google Scholar
49Fukami-Ushiro, K.L. and Dunand, D.C.: NiTi and NiTi–TiC composites. III: Shape-memory recovery. Metall. Mater. Trans. A 27, 193 (1996).CrossRefGoogle Scholar
50Siegert, W., Neuking, K., Mertmann, M., and Eggeler, G.: First cycle shape memory effect in the ternary NiTiNb system. J. Phys. IV 112, 739 (2003).Google Scholar
51Dunand, D.C., Mari, D., Bourke, M.A.M., and Roberts, J.A.: NiTi and NiTi–TiC composites IV: Neutron diffraction study of twinning and shape-memory recovery. Metall. Mater. Trans. A 27, 2820 (1996).CrossRefGoogle Scholar
52Gibson, L.J. and Ashby, M.F.: Cellular Solids (Cambridge University Press, Cambridge, 1997).CrossRefGoogle Scholar
53Enghag, P.: Encyclopedia of the Elements: Technical Data, History, Processing, Applications (Wiley-VCH, Weinheim, 2004).CrossRefGoogle Scholar