Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-30T22:19:38.541Z Has data issue: false hasContentIssue false

Shear faults and dislocation core structures in B2 CoAl

Published online by Cambridge University Press:  31 January 2011

C. Vailhé
Affiliation:
Department of Materials Science and Engineering, Virginia Polytechnic Institute, Blacksburg, Virginia 24061
D. Farkas
Affiliation:
Department of Materials Science and Engineering, Virginia Polytechnic Institute, Blacksburg, Virginia 24061
Get access

Abstract

Interatomic potentials of the embedded atom and embedded defect type were derived for the Co–Al system by empirical fitting to the properties of the B2 CoAl phase. The embedded atom potentials reproduced most of the properties needed, except that, in using this method, the elastic constants cannot be fitted exactly because CoAl has a negative Cauchy pressure. In order to overcome this limitation and fit the elastic constants correctly, angular forces were added using the embedded defect technique. The effects of angular forces to the embedded atom potentials were seen in the elastic constants, particularly C44. Planar fault energies changed up to 30% in the {110} and {112} γ surfaces and the vacancy formation energies were also very sensitive to the non-central forces. Dislocation core structures and Peierls stress values were computed for the 〈100〉 and 〈111〉 dislocations without angular forces. As a general result, the dislocations with a planar core moved for critical stress values below 250 MPa in contrast with the nonplanar cores for which the critical stress values were above 1500 MPa. The easiest dislocations to move were the 1/2〈111〉 edge superpartials, and the overall preferred slip plane was {110}. These results were compared with experimental observations in CoAl and previously simulated dislocations in NiAl.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Chang, K., Darolia, R., and Lipsitt, H., Acta Metall. et Mater. 10, 2727 (1992).CrossRefGoogle Scholar
2.Zhang, Y., Tonn, S., and Crimp, M., in High-Temperature Ordered Intermetallic Alloys V, edited by Baker, I., Darolia, R., Whittenberger, J. D., and Yoo, M. H. (Mater. Res. Soc. Symp. Proc. 288, Pittsburgh, PA, 1993), pp. 379384.Google Scholar
3.Pasianot, R., Farkas, D., and Savino, E., Phys. Rev. B 43, 6952 (1991).CrossRefGoogle Scholar
4.Pasianot, R. and Savino, E., Phys. Rev. B 45, 12704 (1992).CrossRefGoogle Scholar
5.Voter, A. and Chen, S., in Characterization of Defects in Materials, edited by Siegel, R. W., Weertman, J. R., and Sinclair, R. (Mater. Res. Soc. Symp. Proc. 82, Pittsburgh, PA, 1987), pp. 175180.Google Scholar
6.Farkas, D., Model. Simula. Mater. Sci. Eng. 2, 975 (1994).Google Scholar
7.Oh, D. and Johnson, R., J. Mater. Res. 3, 471 (1988).CrossRefGoogle Scholar
8.Igarashi, M., Khantha, M., and Vítek, V., Philos. Mag. B 63, 603 (1991).CrossRefGoogle Scholar
9.Rose, J. H., Smith, J. R., Guinea, F., and Ferrante, J., Phys. Rev. B 29, 2963 (1984).CrossRefGoogle Scholar
10.Farkas, D., Mutasa, B., Vailhé, C., and Ternes, K., Model. Simula. Mater. Sci. Eng. 3, 201 (1995).CrossRefGoogle Scholar
11.Villas, P. and Calvert, L., Pearson's Handbook of Crystallographic Data for Intermetallic Phases, 2nd ed. (ASM INTERNATIONAL, Materials Park, OH, 1991).Google Scholar
12.Hultgren, R., Desai, P. D., Hawkins, D. T., Gleiser, M., and Kelly, K. K., Selected Values of Thermodynamic Properties of Binary Alloys (ASM, Metals Park, OH, 1973).Google Scholar
13.Bafuk, S. P., Master's Thesis, Michigan Tech., 1981.Google Scholar
14.Mehl, M., Osburn, J., Papaconstantopoulos, D., and Klein, B., in Alloy Phase Stability and Design, edited by Stocks, G. M., Pope, D. P., and Giamei, A. F. (Mater. Res. Soc. Symp. Proc. 186, Pittsburgh, PA, 1991), p. 277.Google Scholar
15.Panova, J. and Farkas, D., in High-Temperature Ordered Intermetallic Alloys VI, edited by Horton, J., Baker, I., Hanada, S., Noebe, R. D., and Schwartz, D. S. (Mater. Res. Soc. Symp. Proc. 364, Pittsburgh, PA, 1995), pp. 151156.Google Scholar
16.Vedula, K. and Khadkikar, P., Effect of Stoichiometry, in High-Temperature Aluminides and Intermetallics, edited by Whang, S., Liu, C., Pope, D., and Stiegler, J. (TMS, Warrendale, PA, 1990).Google Scholar
17.Westbrook, J., J. Electrochem. Soc. 103, 54 (1956).CrossRefGoogle Scholar
18.Kim, S., Acta Metall. Mater. 40, 2793 (1992).CrossRefGoogle Scholar
19.Xiao, H. and Baker, I., Acta Metall. Mater. 42, 1535 (1994).CrossRefGoogle Scholar
20.Gao, F. and Bacon, D. J., Philos. Mag. A 67, 275 (1993).CrossRefGoogle Scholar
21.Hagen, M. and Finnis, M., Mater. Sci. Forum 207–209, 245 (1996).CrossRefGoogle Scholar
22.Farkas, D. and Vailhé, C., J. Mater. Res. 8, 3050 (1993).CrossRefGoogle Scholar
23.Vítek, V., Cryst. Latt. Def. 5, 1 (1974).Google Scholar
24.Rice, J., J. Mech. Phys. Solids 40, 239 (1992).CrossRefGoogle Scholar
25.Zhou, S. J., Carlsson, A., and Thomson, R., Phys. Rev. Lett. 72, 852 (1994).CrossRefGoogle Scholar
26.Vítek, V., Philos. Mag. 18, 773 (1968).CrossRefGoogle Scholar
27.Parthasarathy, T. A., Rao, S. I., and Dimiduk, D., Philos. Mag. A 67, 643 (1993).CrossRefGoogle Scholar
28.Ternes, K., Farkas, D., and Xie, Z., in Intermetallic Matrix Composites III, edited by Graves, J. A., Bowman, R. R., and Lewandowski, J. J. (Mater. Res. Soc. Symp. Proc. 350, Pittsburgh, PA, 1994), pp. 293298.Google Scholar
29.Yaney, D., Pelton, A., and Nix, W., J. Mater. Sci. 21, 2083 (1986).CrossRefGoogle Scholar
30.Pasianot, R., Farkas, D., and Savino, E., in J. Physique III 1, 9971014 (1991).Google Scholar
31.Farkas, D., Pasianot, R., Savino, E., and Miracle, D., in High Temperature Ordered Intermetallic Alloys IV, edited by Johnson, L., Pope, D. P., and Stiegler, J. O. (Mater. Res. Soc. Symp. Proc. 213, Pittsburgh, PA, 1991), pp. 223228.Google Scholar
32.Vítek, V., Perrin, R., and Bowen, D., Philos. Mag. 21, 1049 (1970).CrossRefGoogle Scholar
33.Rao, A., Woodward, C., and Parthasarathy, T., in High Temperature Ordered Intermetallic Alloys IV, edited by Johnson, L., Pope, D. P., and Stiegler, J. O. (Mater. Res. Soc. Symp. Proc. 213, Pittsburgh, PA, 1991), pp. 125130.Google Scholar
34.Xie, Z., Vailhé, C., and Farkas, D., Mater. Sci. Eng. A 170, 59 (1993).CrossRefGoogle Scholar