Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-28T15:36:26.876Z Has data issue: false hasContentIssue false

Si3N4–TiN–Y2O3 ceramics derived from chemically modified perhydropolysilazane

Published online by Cambridge University Press:  31 January 2011

Yuji Iwamoto
Affiliation:
Fine Ceramics Research Association, Synergy Ceramics Laboratory, 2-4-1 Mutsuno, Atsuta-ku, Nagoya 456–8587, Japan
Ko-ichi Kikuta
Affiliation:
Graduate School of Engineering, Nagoya University, 1 Furo-cho, Chikusa-ku, Nagoya 464–8603, Japan
Shin-ichi Hirano
Affiliation:
Graduate School of Engineering, Nagoya University, 1 Furo-cho, Chikusa-ku, Nagoya 464–8603, Japan
Get access

Abstract

[Si–Y–Ti–O–C–N] multicomponent powders were synthesized by pyrolysis at 1000 °C, in NH3 flow, of chemically modified perhydropolysilazane using yttrium triisopropoxide and titanium tetrachloride. [Si–Y–Ti–O–C–N] powders yielded uniform and fine-grained Si3N4–TiN–Y2O3 ceramics by heat treatment at 1800 °C in N2. The fully densified Si3N4–TiN–Y2O3 ceramics were also synthesized by heat treatment at 1800 °C, followed by powder-vehicle hot pressing at 1800 °C in N2. The resulting ceramics revealed that TiN was dispersed as particles having a size range of about 60–600 nm and the fine particles less than 80 nm were dispersed within the β–Si3N4 matrix grains.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Bellosi, A., Guicciardi, S., and Tampieri, A., J. Eur. Ceram. Soc. 9, 83 (1992).CrossRefGoogle Scholar
2.Huahg, J.L., Lee, M.T., Lu, H.H., and Lii, D.F., Mater. Chem. Phys. 45, 203 (1996).Google Scholar
3.Miyata, M., Yasutomi, Y., Sawai, Y., and Kanai, T., J. Ceram. Soc. Jpn. 105(9), 761 (1997).CrossRefGoogle Scholar
4.Wynne, K.J. and Rice, R.W., Annu. Rev. Mater. Sci. 14, 297 (1984).CrossRefGoogle Scholar
5.Seyferth, D. and Wisemann, G.H., in Ultrastructure Processing of Ceramics, Glasses and Composites, edited by Hench, L.L. and Ulrich, D.R. (Wiley-Interscience, New York, 1984), pp. 26562671.Google Scholar
6.Schwartz, K.B., Rowcliffe, D.J., Blum, Y.D., and Laine, R.M., in Better Ceramics Through Chemistry II, edited by Brinker, C., Clark, D., and Ulrich, D. (Mater. Res. Soc. Symp. Proc. 346, Pittsburgh, PA, 1986), pp. 407412.Google Scholar
7.Schmit, W.R., Sukumar, V., Hurley, W.J. Jr, Garcia, R., Doremus, R.H., and Interrante, L.V., J. Am. Ceram. Soc. 73, 2412 (1990).CrossRefGoogle Scholar
8.Funayama, O., Arai, M., Tashiro, Y., Aoki, H., Suzuki, T., Tamura, K., Kaya, H., Nishii, H., and Isoda, T., J. Ceram. Soc. Jpn. 98(1), 104 (1990).CrossRefGoogle Scholar
9.Yajima, S., Okamura, K., Hayashi, J., and Omori, M., Chem. Lett. (9), 931 (1975).CrossRefGoogle Scholar
10.Yajima, S., Hayashi, J., and Omori, M., J. Am. Ceram. Soc. 59, 324 (1976).CrossRefGoogle Scholar
11.West, R., in Ultrastructure Processing of Ceramics, Glasses and Composites, edited by Hench, L.L. and Ulrich, D.R. (Wiley-Interscience, New York, 1984), pp. 235244.Google Scholar
12.Paine, R.T. and Narula, C.K., Chem. Mater. 5, 269 (1993).Google Scholar
13.Yajima, S., Iwai, T., Yamanaka, T., Okamura, K., and Hasegawa, Y., J. Mater. Sci. 16, 1349 (1981).CrossRefGoogle Scholar
14.Soraru, G.D., Ravagni, A., Maschio, R.D., and Arturan, G., J. Am. Ceram. Soc. 74, 2220 (1991).CrossRefGoogle Scholar
15.Soraru, G.D., Ravagni, A., and Campostrini, R., J. Eur. Ceram. Soc. 8, 29 (1991).Google Scholar
16.Okuzaki, S., Iwamoto, Y., Kondoh, S., Kikuta, K., and Hirano, S., J. Mater. Res. 14, 189 (1999).CrossRefGoogle Scholar
17.Bill, J., Friess, M., Aldinger, F., and Riedel, R., in Better Ceramics Through Chemistry VI, edited by Cheetham, A.K., Brinker, C.J., Mecartney, M.L., and Sanchez, C. (Mater. Res. Soc. Symp. Proc. 346, Pittsburgh, PA, 1994), pp. 605615.Google Scholar
18.Bill, J. and Aldinger, F., Adv. Mater. 7, 775 (1995).CrossRefGoogle Scholar
19.Riedel, R. and Dressler, W., Ceram. Int. 22, 233 (1996).Google Scholar
20.Funayama, O., Kato, T., Tashiro, Y., and Isoda, T., J. Am. Ceram. Soc. 76, 717 (1993).CrossRefGoogle Scholar
21.Funayama, O., Tashiro, Y., Aoki, T., and Isoda, T., J. Jpn. Ceram. Soc. 102(10), 908 (1994).CrossRefGoogle Scholar
22.Iwamoto, Y., Matsubara, H., and Brook, R. J., in Ceramic Processing Science and Technology, edited by Hausner, H., Messing, G.L., and Hirano, S. (Ceram. Trans. 51, Am. Ceram. Soc., Westerville, OH, 1995), pp. 193197.Google Scholar
23.Funayama, O., Aoki, T., and Isoda, T., J. Jpn. Ceram. Soc. 104, 355 (1996).CrossRefGoogle Scholar
24.Iwamoto, Y., Kikuta, K., and Hirano, S., J. Mater. Res. 13, 353 (1998).CrossRefGoogle Scholar
25.Iwamoto, Y., Kikuta, K., and Hirano, S., J. Mater. Res. 14, 1886 (1999).CrossRefGoogle Scholar
26.Iwamoto, Y., Kikuta, K., and Hirano, S., in Ceramic Processing Science and Technology, edited by Messing, G.L., Hirano, S., and Lange, F. (Ceram. Trans. 83, Am. Ceram. Soc., Westerville, OH, 1998), pp. 6370.Google Scholar
27.Seyferth, D., Wiseman, G., and Prud'homme, C., J. Am. Ceram. Soc. 66, C13 (1983).CrossRefGoogle Scholar
28.Silverstein, R.M., Bassler, G.C., and Morrill, T.C., Spectrometric Identification of Organic Compounds, 5th ed. (John Wiley & Sons, New York, 1991), Chaps. 3 and 4.Google Scholar
29.Riedel, R., Kroke, E., Greiner, A., Gabriel, A.O., Ruwish, L., and Nicolich, J., Chem. Mater. 10, 2964 (1998).CrossRefGoogle Scholar
30.Narula, C.K., Demczyk, B.G., Czubarow, P., and Seyferth, D., J. Am. Ceram. Soc. 78, 1247 (1995).CrossRefGoogle Scholar
31.Herrmann, M., Balzer, B., Schbert, Chr., and Hermel, W., J. Eur. Ceram. Soc. 12, 287 (1993).CrossRefGoogle Scholar