Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T13:36:19.540Z Has data issue: false hasContentIssue false

SiC nanowire vapor–liquid–solid growth using vapor-phase catalyst delivery

Published online by Cambridge University Press:  09 July 2012

Rooban Venkatesh K.G. Thirumalai
Affiliation:
Department of Electrical and Computer Engineering, Mississippi State University, Mississippi State, Starkville, Mississippi 39762
Bharat Krishnan
Affiliation:
Department of Electrical and Computer Engineering, Mississippi State University, Mississippi State, Starkville, Mississippi 39762
Albert V. Davydov
Affiliation:
Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
J.Neil Merrett
Affiliation:
Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio 45433
Yaroslav Koshka*
Affiliation:
Department of Electrical and Computer Engineering, Mississippi State University, Mississippi State, Starkville, Mississippi 39762
*
a)Address all correspondence to this author. e-mail: ykoshka@ece.msstate.edu
Get access

Abstract

A method of growing SiC nanowires (NWs) on 4H–SiC surfaces by in situ vapor-phase catalyst delivery was developed as an alternative to the ex situ deposition of the metal catalyst on the targeted surfaces before the NW chemical vapor deposition (CVD) growth. In the proposed method, sublimation of the catalyst from a metal source placed in the hot zone of the CVD reactor, followed by condensation of the catalyst-rich vapor on bare substrate surface was used to form the catalyst nanoparticles required for the vapor–liquid–solid (VLS) growth of SiC NWs. The NW density was found to gradually decrease downstream from the catalyst source and was influenced by both the gas flow rate and by the catalyst diffusion through the boundary layer above the catalyst source. Formation of poly-Si islands at too low value of the C/Si ratio created preferential nucleation centers for misaligned SiC NWs and NW bushes. The flexibility of controlling the nanoparticle density made this technique suitable for NW growth on horizontal surfaces as well as on patterned SiC substrates, including the vertical sidewalls of SiC mesas.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Zekentes, K. and Rogdakis, K.: SiC nanowires: Material and devices. J. Phys. D: Appl. Phys. 44, 133001 (2011).CrossRefGoogle Scholar
Li, X., Wang, X., Bondokov, R., Morris, J., An, Y.H., and Sudarshan, T.S.: Micro/nanoscale mechanical and tribological characterization of SiC for orthopedic applications. J. Biomed. Mater. Res. Part B 72, 353361 (2005).Google Scholar
Santavirta, S., Takagi, M., Nordsletten, L., Anttila, A., Lappalainen, R., and Konttinen, Y.T.: Biocompatibility of silicon carbide in colony formation test in vitro. J. Biomater. Appl. 118, 8991 (1998).Google Scholar
Saddow, S.E., Coletti, C., Frewin, C.L., Schettini, N., Oliveros, A., and Jarosezeski, M.: Single-crystal silicon carbide: A biocompatible and hemocompatible semiconductor for advanced biomedical applications, in Silicon Carbide 2010—Materials, Processing and Devices, edited by Saddow, S.E., Dudley, M., Sanchez, E.K., and Zhao, F. (Mater. Res. Soc. Symp. Proc. 1246, Warrendale, PA, 2010) p. 193.Google Scholar
Yakimova, R., Petoral, R.M. Jr., Yazdi, G.R., Vahlberg, C., Spetz, A.L., and Uvdal, K.: Surface functionalization and biomedical applications based on SiC. J. Phys. D: Appl. Phys. 40, 64356442 (2007).Google Scholar
Neudeck, P.G., Spry, D.J., Trunek, A.J., Evans, L.J., Chen, L-Y., Hunter, G.W., and Androjna, D.: Hydrogen gas sensors fabricated on atomically flat 4H-SiC webbed cantilevers. Mater. Sci. Forum 600603, 11991202 (2009).Google Scholar
Pampuch, R., Górny, G., and Stobierski, L.: Synthesis of one-dimensional nanostructured silicon carbide by chemical vapor deposition. Glass Phys. Chem 31(3), 370 (2005).Google Scholar
Peng, H.Y., Zhou, X.T., Lai, H.L., Wang, N., and Lee, S.T.: Microstructure observations of silicon carbide nanorods. J. Mater. Res. 15, 2020 (2000).Google Scholar
Seong, H.K., Park, T.E., Lee, S., Lee, K.R., Park, J.K., and Choi, H.J.: Magnetic properties of vanadium-doped silicon carbide nanowires. Met. Mater. Int. 15(1), 107 (2009).Google Scholar
Yao, Y., Lee, S.T., and Li, F.H.: Direct synthesis of 2H–SiC nanowhiskers. Chem. Phys. Lett. 381, 628633 (2003).CrossRefGoogle Scholar
Seong, H-K., Choi, H-J., Lee, S-K., Lee, J-I., and Choi, D-J.: Optical and electrical transport properties in silicon carbide nanowires. Appl. Phys. Lett. 85, 12561258 (2004).Google Scholar
Wang, H., Xie, Z., Yang, W., Fang, J., and An, L.: Morphology control in the vapor-liquid-solid growth of SiC nanowires. Cryst. Growth Des. 8, 38933896 (2008).CrossRefGoogle Scholar
Gao, F., Yang, W., Wang, H., Fan, Y., Xie, Z., and An, L.: Controlled Al-doped single-crystalline 6H-SiC nanowires. Cryst. Growth Des. 8, 14611464 (2008).Google Scholar
Wu, R., Li, B., Gao, M., Chen, J., Zhu, Q., and Pan, Y.: Tuning the morphologies of SiC nanowires via the control of growth temperature, and their photoluminescence properties. Nanotechnology 19, 335602 (2008).Google Scholar
Bechelany, M., Brioude, A., Cornu, D., Ferro, G., and Miele, P.: Raman spectroscopy study of individual SiC nanowires. Adv. Funct. Mater. 17, 939943 (2007).Google Scholar
Wang, H., Lin, L., Yang, W., Xie, Z., and An, L.: Preferred orientation of sic nanowires induced by substrates. J. Phys. Chem. C 114, 25912594 (2010).Google Scholar
Sundaresan, S.G., Davydov, A.V., Vaudin, M.D., and Levin, I.: Growth of silicon carbide nanowires by a microwave heating-assisted physical vapor transport process using group VIII metal catalysts. Chem. Mater. 19, 55315537 (2007).Google Scholar
Krishnan, B., Thirumalai, R.V.K.G., Koshka, Y., Sundaresan, S., Levin, I., Davydov, A.V., and Merrett, J.N.: Substrate-dependent orientation and polytype control in SiC nanowires grown on 4H-SiC substrates. Cryst. Growth Des. 11, 538541 (2011).Google Scholar
Yoshida, H., Kohno, H., Ichikawa, S., Akita, T., and Takeda, S.: Inner potential fluctuation in SiC nanowires with modulated interior structure. Mater. Lett. 61, 31343137 (2007).Google Scholar
Endo, M. and Koyama, T.: Preparation of carbon fiber by vapor-phase method. Japanese Patent No. 60–027700, 1985.Google Scholar
Cheng, H.M., Li, F., Su, G., Pan, H., He, L.L., Sun, X., Dresselhaus, M.S., Swnts, T., and During, C.: Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons. Appl. Phys. Lett. 72, 32823284 (1998).Google Scholar
Inoue, Y., Kakihata, K., Hirono, Y., Horie, T., Ishida, A., and Mimura, H.: One-step grown aligned bulk carbon nanotubes by chloride mediated chemical vapor deposition. Appl. Phys. Lett. 92, 213113 (2008).Google Scholar
Wegner, K., Walker, B., Tsantilis, S., and Pratsinis, S.E.: Design of metal nanoparticle synthesis by vapor flow condensation. Chem. Eng. Sci. 57, 17531762 (2002).Google Scholar
Thirumalai, R.V.K.G., Krishnan, B., Davydov, A.V., Merrett, J.N., and Koshka, Y.: Growth on differently-oriented sidewalls of SiC mesas as a way of achieving well-aligned SiC nanowires. Cryst. Growth Des. 12, 22212225 (2012).CrossRefGoogle Scholar
Kotamraju, S., Krishnan, B., Melnychuk, G., and Koshka, Y.: Low-temperature homoepitaxial growth of 4H–SiC with CH3Cl and SiCl4 precursors. J. Cryst. Growth 312, 645650 (2010).CrossRefGoogle Scholar