Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-28T00:53:16.411Z Has data issue: false hasContentIssue false

Silicon and zinc telluride nanoparticles synthesized by low energy density pulsed laser ablation into ambient gases

Published online by Cambridge University Press:  31 January 2011

Douglas H. Lowndes
Affiliation:
Solid State Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831-6056
Christopher M. Rouleau
Affiliation:
Solid State Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831-6056
T.G. Thundat
Affiliation:
Life Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831- 123
G. Duscher
Affiliation:
Solid State Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831-6056
E.A. Kenik
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831-6376
S.J. Pennycook
Affiliation:
Solid State Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831-6056
Get access

Abstract

The size distributions of Si and ZnTe nanoparticles produced by low energy density ArF (193 nm) pulsed laser ablation into ambient gases were measured as a function of the gas pressure, P, and target-substrate separation, Dts. For both Si and ZnTe, the largest nanoparticles were found closest to the ablation target, and the mean nanoparticle size decreased with increasing Dts. For Si ablation into He, the mean nanoparticle diameter did not increase monotonically with gas pressure but reached a maximum near P = 6 Torr. High resolution Z-contrast transmission electron microscopy and energy loss spectroscopy revealed that ZnTe nanoparticles consist of a crystalline core surrounded by an amorphous ZnO shell; growth defects and surface steps are clearly visible in the crystalline core. A pronounced narrowing of the ZnTe nanocrystal size distribution with increasing Dts also was found. The results demonstrate that the size of laser-ablated nanoparticles can be controlled by varying the molecular weight and pressure of an ambient gas and that nanometer-scale particles can be synthesized. Larger aggregates of both ZnTe and Si having a “flakelike” or “weblike” structure were formed at the higher ambient gas pressures; for ZnTe these appear to be open agglomerates of much smaller (∼10 nm) particles.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Lowndes, D. H., Geohegan, D. B., Puretzky, A. A., Norton, D. P., and Rouleau, C. M., Science 273, 898 (1996).CrossRefGoogle Scholar
2.Powers, D. E., Hansen, S. G., Geusic, M. E., Pulu, A. C., Hopkins, J. B., Dietz, T. G., Duncan, M.A., Langridge-Smith, P. R. R., and Smalley, R. E., J. Phys. Chem. 86, 2556 (1982).CrossRefGoogle Scholar
3.Rouleau, C.M., Lowndes, D.H., McCamy, J.W., Budai, J.D., Poker, D.B., Geohegan, D. B., Puretzky, A. A., and Zhu, S., Appl. Phys. Lett. 67, 2545 (1995).CrossRefGoogle Scholar
4.Lowndes, D. H., Rouleau, C. M., Geohegan, D. B., Puretzky, A. A., Strauss, M. A., Pedraza, A. J., Park, J. W., Budai, J. D., and Poker, D. B., in Advanced Laser Processing of Materials—Fundamentals and Applications, edited by Singh, R., Norton, D., Laude, L., Narayan, J., and Cheung, J. (Mater. Res. Soc. Symp. Proc. 397, Pittsburgh, PA, 1996), p. 107.Google Scholar
5.Rouleau, C. M., Lowndes, D. H., Strauss, M. A., Cao, S., Pedraza, A. J., Geohegan, D. B., Puretzky, A. A., and Allard, L. F., in Advanced Laser Processing of Materials—Fundamentals and Applications, edited by Singh, R., Norton, D., Laude, L., Narayan, J., and Cheung, J. (Mater. Res. Soc. Symp. Proc. 397, Pittsburgh, PA, 1996), p. 119.Google Scholar
6.Wijekoon, W. M. K. P., Lyktey, M. Y. M., Prasad, P. N., and Garvey, J. F., Appl. Phys. Lett. 67, 1698 (1995).CrossRefGoogle Scholar
7.Yoshida, T., Takeyama, S., Yamada, Y., and Mutoh, K., Appl. Phys. Lett. 68, 1772 (1996).CrossRefGoogle Scholar
8.Yamada, Y., Orii, T., Umezu, I., Takeyama, S., and Yoshida, T., Jpn. J. Appl. Phys. 35, 1361 (1996).CrossRefGoogle Scholar
9.Yoshida, T., Yamada, Y., and Orii, T., in Technical Digest of the Inter. Electron Devices Mtg., San Francisco, CA, Dec. 8–11, 1996, IEEE, p. 417.CrossRefGoogle Scholar
10.Makimura, T., Kunii, Y., and Murakami, K., Jpn. J. Appl. Phys. 35, 4780 (1996).CrossRefGoogle Scholar
11.Makimura, T., Sakuramoto, T., and Murakami, K., Jpn. J. Appl. Phys. 35, L735 (1996).CrossRefGoogle Scholar
12.Makimura, T., Kunii, Y., Ono, N., and Murakami, K., Jpn. J. Appl. Phys. 35, L1703 (1996).CrossRefGoogle Scholar
13.Yoshida, T., personal communication. In the deposition experiments the laser pulse energy was 60 mJ, measured before the quartz entrance window. Assuming a transmission factor of 0.91 and the 1×3 mm area of Refs. 7 and 8, this corresponds to Ed ∼ 1.8 J/cm2.Google Scholar
14.Matsunawa, A., Katayama, S., Susuki, A., and Ariyasu, T., Trans. Jpn. Welding Res. Institute 15, 233 (1986).Google Scholar
15. 0.003-inch × 3-inch #3 edge 1095 steel ribbon, tempered, polished, and blued; Amstek Metal, Joliet, IL.Google Scholar
16.Geohegan, D.B., Appl. Phys. Lett. 60, 2732 (1992).CrossRefGoogle Scholar
17.Duscher, G., Geohegan, D. B., Puretzky, A. A., and Pennycook, S.J., personal communication.Google Scholar
18.Efros, Al. L. and Efros, A. L., Sov. Phys. Semicond. 16, 772 (1982).Google Scholar
19.Brus, L.E., J. Chem. Phys. 79, 5566 (1983).CrossRefGoogle Scholar
20.Brus, L., J. Phys. Chem. 90, 2555 (1986).CrossRefGoogle Scholar
21.Camata, R.P., Atwater, H. A., Vahala, K. J., and Flagan, R. C., Appl. Phys. Lett. 68, 3162 (1996).CrossRefGoogle Scholar
22.Ifuku, T., Otobe, M., Itoh, A., and Oda, S., Jpn. J. Appl. Phys. 36, 4031 (1997).CrossRefGoogle Scholar
23.Wood, R.F., Leboeuf, J. N., Chen, K. R., Geohegan, D.B., and Puretzky, A.A., Fourth Int. Conf. on Laser Ablation (COLA'97), Monterey, CA, July 21–25, 1997; Surf. Sci. in press.Google Scholar
24.Raizer, Yu. P., Sov. Phys. JETP 37, 1229 (1960).Google Scholar
25.Geohegan, D.B., personal communication and unpublished data.Google Scholar