Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-28T15:01:26.126Z Has data issue: false hasContentIssue false

Simulation of nacre with TiN/Pt multilayers and a study of their hardness

Published online by Cambridge University Press:  31 January 2011

J. L. He
Affiliation:
Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
W. Z. Li
Affiliation:
Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
H. D. Li
Affiliation:
Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
Get access

Abstract

TiN/Pt multilayers with individual thicknesses between 1 and 8 nm were prepared by ion beam sputtering deposition to simulate the micro-laminated architecture of nacre. Multilayer hardness and the laminated structure were investigated. It was found that sharp but incoherent interfaces were formed between individual layers. The multilayer hardness had strong dependence on layer arrangement. The range of layer thickness appropriate for high hardness was experimentally determined. Hardness enhancement of 30–70% was generally observed. With the layer thickness properly adjusted, the multilayer can even be harder than the hard component (TiN). Annealing experiments indicated that the hardness enhancement was an intrinsic property of the TiN/Pt multilayers.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Mann, S., Nature 332, 119 (1988).CrossRefGoogle Scholar
2.Berman, A., Addadi, L., Leiserowitz, L., Weiner, S., Nelson, M., and Kvik, A., Science 250, 664 (1990).CrossRefGoogle Scholar
3.Laraia, V. J. and Heuer, A. H., in Materials Synthesis Utilizing Biological Processes, edited by Rieke, P. C., Calvert, P. D., and , M. (Mater. Res. Soc. Symp. Proc. 174, Pittsburgh, PA, 1990), p. 125.Google Scholar
4.Nicholson, and Patrick, S., J. Can. Ceram. Soc. 64, 24 (1995).Google Scholar
5.Halverson, D. C., Pyzik, A. J., Aksay, I. A., and Snowden, W. E., J. Am. Ceram. Soc. 72, 775 (1989).CrossRefGoogle Scholar
6.Sarikaya, M., Gunison, K. E., Yasrebi, M., Milius, D. L., and Aksay, I. A., in Proc. Am. Soc. Composites: Fifth Tech. Conf. (Technomic Pub. Co., Lancaster, PA, 1990), p. 176.Google Scholar
7.Yasrebi, M., Kim, G. H., Milius, D. L., Sarikaya, M., and Aksay, I. A., in Better Ceramics Through Chemistry IV, edited by B. J. J., Zelinski, Brinker, C. J., Clark, D. E., and Ulrich, D. R. (Mater. Res. Soc. Symp. Proc. 180, Pittsburgh, PA, 1990), p. 625.Google Scholar
8.Kotov, N. A., Dekamy, I., and Fendler, J. H., J. Phys. Chem. 99, 13965 (1995).Google Scholar
9.Schlesinger, T. E., Cammarata, R. C., Kim, C., Qadi, S. B., and Edelstein, A. S., in Thin Films: Stresses and Mechanical Properties II, edited by Doerner, M., Oliver, W. C., Pharr, G. M., and Brotzen, F. R. (Mater. Res. Soc. Symp. Proc. 188, Pittsburgh, PA, 1990), p. 295.Google Scholar
10.Cammarata, R. C., Schlesinger, T. E., Kim, C., Qadi, S. B., and Edelstein, A. S., Appl. Phys. Lett. 56, 1862 (1990).CrossRefGoogle Scholar
11.Shinn, M., Hultman, L., and Barnett, S. A., J. Mater. Res. 7, 901 (1992).CrossRefGoogle Scholar
12.Chu, X., Wong, M. S., Sproul, W. D., and Barnett, S. A., Surf. Coat. Technol. 61, 251 (1993).CrossRefGoogle Scholar
13.Liu, C. H., Li, W. Z., Li, H. D., and He, J. L., Surf. Coat. Technol. 84, 420 (1996).CrossRefGoogle Scholar
14.Fartash, A., Fullerton, E. E., Schuller, I. K., Bobbin, S. E., Wagner, J. W., Cammarata, R. C., Kumar, S., and Grimsditch, M., Phys. Rev. B. 44, 13760 (1991).CrossRefGoogle Scholar
15.Jankowski, and Alan, F., Nanostructured Mater. 6, 179 (1995).CrossRefGoogle Scholar
16.Helmersson, U., Todorova, S., Barnett, S. A., Sundgren, J. E., Market, L. C., and Greene, J. E., J. Appl. Phys. 62, 481 (1987).CrossRefGoogle Scholar
17.Lappalainen, R., Torri, P., and Hirvonen, J. P., Nanostructured Mater. 6, 897 (1995).CrossRefGoogle Scholar
18.Mumm, D. R., Marshall, D. B., Griffin, A., Griffin, C. W., and Turner, C. S., J. Am. Ceram. Soc. 79, 1416 (1996).CrossRefGoogle Scholar
19.He, J. L., Li, W. Z., and Li, H. D., Mater. Lett. 30, 15 (1997).CrossRefGoogle Scholar
20.Ding, Y., Northwood, D. O., and Alpas, A. T., Mater. Sci. Forum, 189–190, 309 (1995).CrossRefGoogle Scholar
21.Barnett, S. A. and Shinn, M., Annu. Rev. Mater. Sci. 24, 481 (1994).CrossRefGoogle Scholar
22.He, X. M., Li, W. Z., and Li, H. D., J. Mater. Res. 9, 2355 (1994).CrossRefGoogle Scholar
23.Agarwal, B. K., X-ray Spectroscopy, 2nd ed. (Springer-Verlag, Berlin, New York, 1991), p. 337.CrossRefGoogle Scholar
24.McWham, D. B., in Synthetic Modulated Structures, edited by Chang, L. L. and Giessen, B. C. (Academic Press, Orlando, FL, 1985), p. 49.Google Scholar
25.Nix, W. D., Metall. Trans. 20A, 22170 (1989).Google Scholar
26.Cammarata, R. C., Thin Solid Films 240, 82 (1994).CrossRefGoogle Scholar
27.Liu, C. H., Li, W. Z., and Li, H. D., Nucl. Instrum. Methods B95, 323 (1995).CrossRefGoogle Scholar