Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-14T19:21:55.976Z Has data issue: false hasContentIssue false

Single-crystal growth and characterization of the Pb0.5Sr2.5Y1−xCaxCu2Oy system

Published online by Cambridge University Press:  03 March 2011

H. Jin
Affiliation:
Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
N.L. Wang
Affiliation:
Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
Y. Chong
Affiliation:
Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
M. Deng
Affiliation:
Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
L.Z. Cao
Affiliation:
Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
Z.J. Chen
Affiliation:
Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
G.E. Zhou
Affiliation:
Structure Research Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
Z.W. Mao
Affiliation:
Structure Research Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
Get access

Abstract

Two kinds of methods such as spontaneous nucleation from flux-free stoichiometric melt and CuO flux method have been used for the growth of Pb0.5Sr2.5Y1−xCaxCu2Oy single crystals. The morphologies, phases, and compositions occurring in the crystals grown from the two kinds of methods were compared systematically. Optimum conditions for the growth of larger 1212 phase single crystals are x =0.15, 0.25, and 0.35. The lattice parameters of the crystals with the 1212 phase were found to be increasing upon Ca doping. The resistivity behavior of the PbSrYCaCuO single crystals with the 1212 phase both in the state of as-grown and after extended annealings under various oxygen partial pressure was also discussed briefly.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Cava, R.J., Batlog, B., Krajewski, J.J., Rupp, L.W., Schneemeeyer, L.F., Siegrist, T., Dover, R.B. van, Marsh, P., Peck, W.F., Gallagher, P. K., Glarum, S. H., Marshall, J. H., Farrow, R. C., Waszczak, J.V., Hull, R., and Trevor, P., Nature (London) 336, 211 (1988).CrossRefGoogle Scholar
2Rouillon, T., Provost, J., Hervieu, M., Groult, D., Michel, C., and Raveau, B., Physica C 159, 201 (1989).CrossRefGoogle Scholar
3Sasakura, H., Nakahigashi, K., Minamigawa, S., Nakanishi, S., Kogachi, M., Fukuoka, N., Yoshikawa, M., Noguchi, S., Okuda, K., and Yanase, A., Jpn. J. Appl. Phys. 29, L583 (1990).CrossRefGoogle Scholar
4Zandbergen, H. W., Fu, W. T., and van Ruitenbeek, J. M., Physica C 166, 502 (1990).CrossRefGoogle Scholar
5Hughes, R. A., Lu, Y., Timusk, T., and Preston, J. S., Appl. Phys. Lett. 59, 259 (1991).Google Scholar
6Koriyama, S., Sakuyama, K., Meada, T., Yamauchi, H., and Tanaka, S., Physica C 166, 413 (1990).CrossRefGoogle Scholar
7Liu, R.S., Hu, S.F., Gameson, I., Edwards, P.P., Maignan, A., Rouillon, T., Groult, D., and Raveau, B., J. Solid State Chem. 93, 276 (1991).CrossRefGoogle Scholar
8Rouillon, T., Provost, J., Hervieu, M., Groult, D., Michel, C., and Raveau, B., J. Solid State Chem. 84, 375 (1990).Google Scholar
9Iin, H., Chen, Z. J., Cao, L. Z., Zhou, G.E., and Mao, Z. W., J. Cryst. Growth 148, 106 (1995).Google Scholar
10Jin, H., Zhou, G.E., Jia, Y.B., Chen, Z.J., and Cao, L.Z., Mod. Phys. Lett. B 8, 1905 (1994).CrossRefGoogle Scholar
11Bertin, E. P., Introduction to X-ray Spectrotnetric Analysis (Plenum Press, New York and London, 1978), Chap. 7, p. 273.Google Scholar
12Jin, H., Ge, Y.L., Liu, Q.M., Hu, Z.Q., and Shi, C.H., J. Cryst. Growth 116, 524 (1992).Google Scholar
13Lee, J.Y., Swinnea, J.S., and Steinfink, H., J. Mater. Res. 4, 763 (1989).CrossRefGoogle Scholar
14Subramanian, M. A., Gopalakrishnan, J., Torardi, C. C., Gai, P. L., Boyes, E. D., Askew, T. R., Filppen, R. B., Farneth, W. E., and Sleight, A. W., Physica C 157, 124 (1989).CrossRefGoogle Scholar
15Tang, X.X., Morris, D.E., and Sinha, A.P.B., Phys. Rev. B 43, 7936 (1991).CrossRefGoogle Scholar
16Maignan, A., Rouillon, T., Groult, D., Provost, J., Hervieu, M., Michel, C., Raveau, B., Liu, R.S., and Edwards, P.P., Physica C 177, 461 (1991).CrossRefGoogle Scholar
17Tang, X.X. and Morris, D.E., Phys. Rev. B 44, 4553 (1991).CrossRefGoogle Scholar
18Meada, T., Sakuyama, K., Koriyama, S., Yamauchi, H., and Tanada, S., Phys. Rev. B 43, 7866 (1991).CrossRefGoogle Scholar
19Ono, A. and Uchida, Y., Jpn. J. Appl. Phys. 29, L586 (1990).CrossRefGoogle Scholar
20Rouillon, T., Provost, J., Hervieu, M., Groult, D., Michel, C., and Raveau, B., Physica C 171, 7 (1990).CrossRefGoogle Scholar
21Liu, H.B., Morris, D.E., and Sinha, A.P.B., Physica C 204, 262 (1993).CrossRefGoogle Scholar