Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-28T16:05:15.614Z Has data issue: false hasContentIssue false

Sintering of cubic boron nitride without additives at 7.7 GPa and above 2000 °C

Published online by Cambridge University Press:  26 July 2012

Takashi Taniguchi
Affiliation:
National Institute for Research in Inorganic Materials, 1-1 Namiki Tsukuba, Ibaraki 305, Japan
Minoru Akaishi
Affiliation:
National Institute for Research in Inorganic Materials, 1-1 Namiki Tsukuba, Ibaraki 305, Japan
Shinobu Yamaoka
Affiliation:
National Institute for Research in Inorganic Materials, 1-1 Namiki Tsukuba, Ibaraki 305, Japan
Get access

Extract

The sintering behavior of cBN powder with various particle sizes from 0.5 to 12 µm was investigated when sintered at temperatures from 1500 to 2500 °C and pressure of 7.7 GPa without additives. Above 2000 °C, translucent sintered bodies were obtained. Microstructure observation indicated that the optimum sintering temperature was near 2350 °C for fine powders of 0.5 to 1.2 µm and 2 to 4 µm, and slightly higher than 2350 °C for powders from 8 to 12 µm. The fracture toughness of the well-sintered bodies decreased with grain growth above the optimum sintering temperature.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Wentorf, R. H. Jr., DeVries, A. C., and Bundy, F. P., Science 208, 873880 (1980).CrossRefGoogle Scholar
2.Rai, G., in New Diamond Science and Technology, edited by Messier, R., Glass, J. T., Butler, J. E., and Roy, R. (Mater. Res. Soc. Symp. Int. Proc. NDST2, Pittsburgh, PA, 1991), pp. 10691079.Google Scholar
3.Utsumi, Y., Yamata, S., Hara, H., Kaneki, N., and Shimada, K. in New Diamond Science and Technology, edited by Messier, R., Glass, J. T., Butler, J. E., and Roy, R. (Mater. Res. Soc. Int. Symp. Proc. NDST2, Pittsburgh, PA, 1991), pp. 10811086.Google Scholar
4.Wakatsuki, M., Ichinose, K., and Aoki, T., Mater Res. Bull. 7, 9991003 (1972).CrossRefGoogle Scholar
5.Corrigan, F. R. and Bundy, F. P., J. Chem. Phys. 63, 38123817 (1975).CrossRefGoogle Scholar
6.Novikov, N. V., Sirota, Y. V., Mal'nec, V. I., and Petrusha, I.A., Diamond Relat. Mater. 2, 12531256 (1993).CrossRefGoogle Scholar
7.Akaishi, M., Sato, T., Ishii, M., Taniguchi, T., and Yamaoka, S., J. Mater. Sci. Lett. 12, 18831885 (1993).CrossRefGoogle Scholar
8.Taniguchi, T., Akaishi, M., Yamaoka, S., J. Am. Ceram. Soc. 79, 547549 (1996).CrossRefGoogle Scholar
9.Yamaoka, S., Akaishi, M., and Ueda, F., New Diamond (in Japanese) 7 (3), 2829 (1991).Google Scholar
10.Taniguchi, T., Akaishi, M., and Yamaoka, S., in Advanced Materials '96, The 3rd NIRIM International Symposium on Advanced Materials (ISAM '96) Proceedings. (NIRIM, Tsukuba, Japan, 1996), pp. 275280.Google Scholar
11.Akaishi, M., Kanda, H., and Yamaoka, S., J. Hard Mater. 3, 75 (1992).Google Scholar
12.Brooks, C. A., Inst. Phys. Conf. Ser. 75, 207220 (1986).Google Scholar
13.Evans, A. G. and Charles, E. A.J. Am. Ceram. Soc. 59, 371 (1976).CrossRefGoogle Scholar