Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-05T04:34:26.435Z Has data issue: false hasContentIssue false

Size-dependent Phase Transformations During Point Loading of Silicon

Published online by Cambridge University Press:  31 January 2011

A. B. Mann
Affiliation:
Department of Materials Science & Engineering, The Johns Hopkins University, Baltimore, Maryland 21218
D. van Heerden
Affiliation:
Department of Materials Science & Engineering, The Johns Hopkins University, Baltimore, Maryland 21218
J. B. Pethica
Affiliation:
Department of Materials, Oxford University, Oxford, OX1 3PH, United Kingdom
T. P. Weihs
Affiliation:
Department of Materials Science & Engineering, The Johns Hopkins University, Baltimore, Maryland 21218
Get access

Abstract

Using a unique combination of in situ electrical and acoustical measurements and ex situ transmission electron microscopy, the phase transformations of silicon during point loading were shown to exhibit a strong dependence on the size of the deformed volume. For nanometer-size volumes of silicon, the final phase was the body centered cubic structure BC8, but for larger volumes it was amorphous. The size dependence was explained by considering how shear stress fields vary with contact size and how interfacial effects between the silicon substrate and the BC8 phase determine its stability. For both small and large contacts the presence of a nonmetallic phase (assumed to be the Rhombohedral structure R8) was observed.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Gupta, M.C. and Ruoff, A.L., J. Appl. Phys. 51, 1072 (1980).CrossRefGoogle Scholar
2.Olijnyk, H., Sikka, S.K., and Holzapfel, W.B., Phys. Lett. 103A, 137 (1984).CrossRefGoogle Scholar
3.Chang, K.J. and Cohen, M.L., Phys. Rev. B 31, 7819 (1985).CrossRefGoogle Scholar
4.Hu, J.Z., Merkle, L.D., Menoni, C.S., and Spain, I.L., Phys. Rev. B. 34, 4679 (1986).CrossRefGoogle Scholar
5.Biswas, R., Martin, R.M., Needs, R.J., and Nielsen, O.H., Phys. Rev. B 35, 9559 (1987).CrossRefGoogle Scholar
6.Crain, J., Ackland, G.J., and Clark, S.J., Rep. Prog. Phys. 58, 705 (1995).CrossRefGoogle Scholar
7.Minomura, H. and Drickamer, H.G., J. Phys. Chem. Solids 23, 451 (1962).CrossRefGoogle Scholar
8.Wentorf, R.H. Jr, and Kasper, J.S., Science 139, 338 (1963).CrossRefGoogle Scholar
9.Jamieson, J.C., Science 139, 762 (1963).CrossRefGoogle Scholar
10.Bundy, F.P., J. Chem. Phys. 41, 3809 (1964).CrossRefGoogle Scholar
11.Clarke, D.R., Kroll, M.C., Kirchner, P.D., Cook, R.F., and Hockey, B.J., Phys. Rev. Lett. 21, 2156 (1988).CrossRefGoogle Scholar
12.Pharr, G.M., Oliver, W.C., and Harding, D.S., J. Mater. Res. 6, 1129 (1991).CrossRefGoogle Scholar
13.Page, T.F., Oliver, W.C., and McHargue, C.J., J. Mater. Res. 7, 450 (1992).CrossRefGoogle Scholar
14.Gilman, J.J., J. Mater. Res. 7, 535 (1992).CrossRefGoogle Scholar
15.Pharr, G.M., Oliver, W.C., Cook, R.F., Kirchner, P.D., Kroll, M.C., Dinger, T.R., and Clarke, D.R., J. Mater. Res. 7, 961 (1992).CrossRefGoogle Scholar
16.Callahan, D.L. and Morris, J.C., J. Mater. Res. 7, 1614 (1992).CrossRefGoogle Scholar
17.Weppelmann, E.R., Field, J.S., and Swain, M.V., J. Mater. Res. 8, 830 (1993).CrossRefGoogle Scholar
18.Hainsworth, S.V., Whitehead, A.J., and Page, T.F., Plastic Deformation of Ceramics, edited by Bradt, R.C., Brooks, C.A., and Routbort, J.L. (Plenum Press, New York, 1995), p. 173.CrossRefGoogle Scholar
19.Kailer, A., Gogotsi, Y.G., and Nickel, K.G., J. Appl. Phys. 81, 3057 (1997).CrossRefGoogle Scholar
20.Weihs, T.P., Lawrence, C.W., Derby, B., Scruby, C.B., and Pethica, J.B., in Thin Films: Stresses and Mechanical Properties III, edited by Nix, W.D., Bravman, J.C., Arzt, E., and Freund, L.B. (Mater. Res. Symp. Proc. 239, Pittsburgh, PA, 1992), p. 361.Google Scholar
21.Jeffrey, S., Sofield, C.J., and Pethica, J.B., Appl. Phys. Lett. 73, 172 (1998).CrossRefGoogle Scholar
22.Piltz, R.O., Maclean, J.R., Clark, S.J., Ackland, G.J., Hatton, P.D., and Crain, J., Phys. Rev. B 52, 4072 (1995).CrossRefGoogle Scholar
23.Pfrommer, B.G., Côté, M., Louie, S.G., and Cohen, M.L., Phys. Rev. B 56, 6662 (1997).CrossRefGoogle Scholar
24.Johnson, K.L., Contact Mechanics (Cambridge University Press, New York, 1985).CrossRefGoogle Scholar
25.Tolbert, S.H., Herhold, A.B., Brus, L.E., and Alivisatos, A.P., Phys. Rev. Lett. 76, 4384 (1996).CrossRefGoogle Scholar
26.Delaey, L., Mater. Sci. Technol. 5, 340 (1991).Google Scholar