Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-02T22:22:07.584Z Has data issue: false hasContentIssue false

Sol-gel processing of cordierite: Effect of seeding and optimization of heat treatment

Published online by Cambridge University Press:  31 January 2011

Ann M. Kazakos
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
Sridhar Komarneni
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
Rustum Roy
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
Get access

Abstract

Three series of cordierite powders were prepared by the sol-gel route: a single phase (monophasic) gel prepared from alkoxides, a nominally triphasic nanocomposite gel made with two nanosized powders and one solution phase, and a truly compositionally triphasic nanocomposite gel prepared from three nanosized powders. Crystalline α-cordierite seeds were also incorporated with the gels and their effectiveness as nucleating agents was investigated and found to lower the crystallization temperature of α-cordierite by 125–150°C. The densification behavior of powder compacts was examined and alterations made to the heat treatment until optimum conditions were found. The truly triphasic compact sintered at 1300°C for 2 h resulted in 100% of theoretical density whereas the nominally triphasic and monophasis pellets densified to 96% and 80%, respectively. The enhanced densification achieved with powder compacct prepared for triphasic nanocomposite gels is due to part to the excess free energy of the three components.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Lachman, I. M., Bagley, R. D., and Lewis, R. M., Ceram. Bull. 60 (2), 202 (1981).Google Scholar
2Ikawa, H., Otagiri, T., Imai, O., Suzuki, M., Urabe, K., and Udagawa, S., J. Am. Ceram. Soc. 69 (6), 492 (1986).CrossRefGoogle Scholar
3Hirose, Y., Doi, H., and Kamigaito, O., J. Mater. Sci. Lett. 3, 153 (1984).CrossRefGoogle Scholar
4Higgins, R. J., Bowen, H.K., and Giess, E. A., in Advances in Ceramics, edited by Messing, G.L., Mazdiyasni, K.S., McCauley, J.W., and Haber, R.A. (American Ceramic Society, Westerville, OH, 1987), Vol. 21, p. 691.Google Scholar
5Suzuki, H., Ota, K., and Saito, H., Yogyo-Kyokai-Shi 95 (2), 25 (1987).Google Scholar
6Mussler, B. H. and Shafer, M.W., Ceram. Bull. 63 (5), 705 (1984).Google Scholar
7Watanabe, K. and Giess, E., J. Am. Ceram. Soc. 68 (4), C102 (1985).Google Scholar
8Watanabe, K., Giess, E. A., and Shafer, M.W., J. Mater. Sci. 20 (2), 508 (1985).CrossRefGoogle Scholar
9Gensse, C. and Chowdhry, U., in Better Ceramics Through Chemistry II (Proc. Mater. Res. Soc. Symp.), edited by Brinker, C. J., Clark, D. E., and Ulrich, D. R. (Materials Research Society, Pittsburgh, PA, 1986), Vol. 73, p. 693.Google Scholar
10Bernier, J. C., Rehspringer, J. L., Vilminot, S., and Poix, P., in Better Ceramics Through Chemistry II (Proc. Mater. Res. Soc. Symp.), edited by Brinker, C. J., Clark, D. E., and Ulrich, D. R. (Materials Research Society, Pittsburgh, PA, 1986), Vol. 73, p. 129.Google Scholar
11Vesteghem, H., Di Giampaolo, A. R., and Dauger, A., J. Mater. Sci. Lett. 6, 1187 (1987).CrossRefGoogle Scholar
12Suzuki, H., Ota, K., and Saito, H., Yogyo-Kyokai-Shi 95 (2), 32 (1987).Google Scholar
13Lamar, R. S. and Warner, M. F., J. Am. Ceram. Soc. 37 (12), 602 (1954).CrossRefGoogle Scholar
14Morrell, R., Proc. Brit. Ceram. Soc. 28, 53 (1979).Google Scholar
15Miller, D. M., Corning Glass Works, Corning, NY, United States Patent 3,926,648 (1975).Google Scholar
16Gregory, A. G. and Veasey, T. J., J. Mater. Sci. 6 (10), 1312 (1971).CrossRefGoogle Scholar
17Barry, T.I., Lay, L. A., and Morrell, R., Sci. Ceram. 8, 331 (1976).Google Scholar
18Thorp, J.S. and Hutton, W., J. Phys. Chem. Solids 42, 843 (1981).CrossRefGoogle Scholar
19Thorp, J.S. and Hutton, W., J. Phys. Chem. Solids 44, 1039 (1983).CrossRefGoogle Scholar
20Hutton, W. and Thorp, J.S., J. Mater. Sci. 20 (2), 542 (1985).CrossRefGoogle Scholar
21Beall, G.H., in Advances in Ceramics, edited by Boyd, D. C. and MacDowell, J. F. (American Ceramic Society, Columbus, OH, 1986), Vol. 18, p. 157.Google Scholar
22Zelinski, B. J. J., Fabes, B.D., and Uhlmann, D. R., J. Non-Cryst. Solids 82, 307 (1986).CrossRefGoogle Scholar
23Moyer, J. R., Prunier, A. R., Hughes, N. N., and Winterton, R. C., in Better Ceramics Through Chemistry II (Proc. Mater. Res. Soc. Syrup.), edited by Brinker, C. J., Clark, D. E., and Ulrich, D. R. (Materials Research Society, Pittsburgh, PA, 1986), Vol. 73, p. 117.Google Scholar
24Smart, R.M. and Glasser, F.P., J. Mater. Sci. 11, 1459 (1976).CrossRefGoogle Scholar
25Paulick, L. A., Yu, Y., and Mah, T., in Advances in Ceramics, edited by Messing, G.L., Mazdiyasni, K. S., McCauley, J.W., and Haber, R. A. (American Ceramic Society, Westerville, OH, 1987), Vol. 21, p. 121.Google Scholar
26Roy, R. and Osborn, E. F., Am. Mineral. 39 (11/12), 853 (1954).Google Scholar
27Hill, V. G., Roy, R., and Osborn, E. F., J. Am. Ceram. Soc. 35 (6), 135 (1952).CrossRefGoogle Scholar
28Roy, D. M. and Roy, R., Am. Mineral. 39 (11/12), 957 (1954).Google Scholar
29Roy, R., J. Am. Ceram. Soc. 39 (4), 145 (1956).CrossRefGoogle Scholar
30Roy, R. A. and Roy, R., Abstracts, Annual Meeting of Materials Research Society (Boston, MA, 1982), p. 377.Google Scholar
31Kumagi, M. and Messing, G. L., J. Am. Ceram. Soc. 67 (11), C230 (1984).Google Scholar
32Kumagi, M. and Messing, G. L., J. Am. Ceram. Soc. 68 (9), 500 (1985).CrossRefGoogle Scholar
33Suwa, Y., Roy, R., and Komarneni, S., J. Am. Ceram. Soc. 68 (9), C238 (1985).CrossRefGoogle Scholar
34Roy, R., Suwa, Y., and Komarneni, S., in Science of Ceramic Chemical Processing, edited by Hench, L.L. and Ulrich, D. R. (John Wiley & Sons, New York, 1986), p. 247.Google Scholar
35Messing, G. L., Kumagai, M., Shelleman, R. A., and McArdle, J. L., in Science of Ceramic Chemical Processing, edited by Hench, L. L. and Ulrich, D. R. (John Wiley & Sons, New York, 1986), p. 259.Google Scholar
36Suwa, Y., Komarneni, S., and Roy, R., Mater, J.. Sci. Lett. 3, 21 (1986).CrossRefGoogle Scholar
37Suwa, Y., Roy, R., and Komarneni, S., Mater. Sci. Eng. 83, 151 (1986).CrossRefGoogle Scholar
38Komarneni, S., Suwa, Y., and Roy, R., J. Mater. Sci. Lett. 6, 525 (1987).CrossRefGoogle Scholar
39Vilmin, G., Komarneni, S., and Roy, R., J. Mater. Res. 2 (4), 489 (1987).CrossRefGoogle Scholar
40Roy, R., Komarneni, S., and Yarbrough, W., in Ultrastructure Processing of Advanced Ceramics, edited by Mackenzie, J. D. and Ulrich, D. R. (John Wiley & Sons, New York, 1988), p. 571.Google Scholar
41Komarneni, S., Suwa, Y., and Roy, R., J. Am. Ceram. Soc. 69 (7), C155 (1986).Google Scholar