Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-14T19:14:06.235Z Has data issue: false hasContentIssue false

Solid state amorphization reactions in deformed Ni-Zr multilayered composites

Published online by Cambridge University Press:  31 January 2011

G. C. Wong
Affiliation:
Keck Laboratory, California Institute of Technology, Pasadena, California 91125
W. L. Johnson
Affiliation:
Keck Laboratory, California Institute of Technology, Pasadena, California 91125
E. J. Cotts
Affiliation:
Keck Laboratory, California Institute of Technology, Pasadena, California 91125
Get access

Abstract

The mechanisms of metallic glass formation and competing crystallization processes in mechanically-deformed Ni-Zr multilayered composites have been investigated by means of differential scanning calorimetry and x-ray diffraction. Our investigation of the heat of formation of amorphous NixZr1−x alloys shows a large negative heat of mixing (on the order of 30 kJ/mole) for compositions near Zr55Ni45 with a compositional dependence qualitatively similar to that predicted by mean field theory. We find that the products of solid state reactions in composites of Ni and Zr can be better understood in terms of the equilibrium phase diagram and the thermal stability of liquid quenched metallic glasses. We have determined the composition of the growing amorphous phase at the Zr interface in these Ni-Zr diffusion couples to be 55 ± 4% Zr. We investigated the kinetics of solid state reactions competing with the solid state amorphization reaction and found the value of the activation energy of the initial crystallization and growth of the growing amorphous phase to be 2.0 ± 0.1 eV, establishing an upper limit on the thermal stability of the growing amorphous phase.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Schwarz, R. B. and Johnson, W. L., Phys. Rev. Lett. 51, 415 (1983).CrossRefGoogle Scholar
2Johnson, W. L., Prog. Mater. Sci. 30, 80 (1986).CrossRefGoogle Scholar
3Proc. of the Conf. on Solid State Amorphizing Transformations, edited by Schwarz, R. B. and Johnson, W. L., J. Less-Common Met. 140, 335 (1988).Google Scholar
4Cotts, E. J., Meng, W. J., and Johnson, W. L., Phys. Rev. Lett. 57, 2295 (1986).CrossRefGoogle Scholar
5Samwer, K., Phys. Rep. 161, 1 (1988).CrossRefGoogle Scholar
6Schultz, L. and Hellstern, E., in Science and Technology of Rapidly Quenched Alloys, edited by Tenhover, M., Johnson, W. L., and Tanner, L. E., Materials Research Society Symposia Proceedings (Materials Research Society, Pittsburgh, PA, 1987), Vol. 80 and other papers in this volume.Google Scholar
7Vredenberg, A. M., Westendorp, J. F. M., Saris, F.W., van der Pers, N. M., and Keijser, Th. H. de, J. Mater. Sci. 1, 774 (1986).Google Scholar
8Cheng, Y.T., Johnson, W.L., and Nicolet, M-A., Appl. Phys. Lett. 47, 800 (1985).CrossRefGoogle Scholar
9Hahn, H., Averback, R.S., and Rothman, S. J., Phys. Rev. B 33, 8825 (1986).CrossRefGoogle Scholar
10Hahn, H. and Averback, R.S., Phys. Rev. B 37, 6537 (1988).CrossRefGoogle Scholar
11Cotts, E. J., Wong, G. C., and Johnson, W. L., Phys. Rev. B 37, 9049(1988).CrossRefGoogle Scholar
12Schultz, L., in Rapidly Quenched Metals, edited by Steeb, S. and Warlimont, H. (North-Holland, Amsterdam, 1984), p. 551; L. Schultz, in Proc. of the 6th Int. Conf. on Liquid and Amorphous Metals, in Z. Phys. Chem. 156 (1987).Google Scholar
13Highmore, R. J., Evetts, J.E., Greer, A.L., and Somekh, R. E., Appl. Phys. Lett. 50, 566 (1987).CrossRefGoogle Scholar
14Atzmon, M., Verhoeven, J. D., Gibson, E. D., and Johnson, W. L., Appl. Phys. Lett. 45, 1052 (1984).CrossRefGoogle Scholar
15Chopra, K. L., Thin Film Phenomena (Krieger, Malabar, FL, 1969).Google Scholar
16Meng, W. J., Cotts, E. J., and Johnson, W. L., in Interfaces, Superlattices and Thin Films, edited by Dow, J. D. and Schuller, I. K., Materials Research Society Symposia Proceedings (Materials Research Society, Pittsburgh, PA, 1987), Vol. 77.Google Scholar
17Buschow, K. H., J. Phys. F. 14, 593 (1984).CrossRefGoogle Scholar
18Altounian, Z., Guo-hua, Tu, and Strom-Olsen, J. O., J. Appl. Phys. 54, 3111 (1983).CrossRefGoogle Scholar
19Spit, F. H. M., Drijiver, J.W., and Radelaar, S., Scripta Metall. 14, 1071 (1980).CrossRefGoogle Scholar
20Miedema, A.R., Phillips Tech. Rev. 36, 217 (1976); P.I. Leoff, A.W. Weeber, and A. R. Miedema, J. Less-Common Met. 140, 299 (1988).Google Scholar
21Saunders, N. and Miodownik, A. P., J. Mater. Sci. 1, 38 (1986).Google Scholar
22Pasturel, A., Colinet, C., and Buschow, K. H. J., in Rapidly Quenched Metals, edited by S. Steeb and H. Warlimont (Elsevier Science Publishers, 1985).Google Scholar
23Gosele, U. and Tu, K. N., J. Appl. Phys. 53, 3252 (1982).CrossRefGoogle Scholar
24Deal, B. E. and Grove, A. S., J. Appl. Phys. 36, 3770 (1965).CrossRefGoogle Scholar
25Barbour, J. C., Phys. Rev. Lett. 55, 2872 (1985).CrossRefGoogle Scholar
26Clemens, B. M., Phys. Rev. B 33, 7615 (1986).CrossRefGoogle Scholar
27Dong, Y. D., Gregan, G., and Scott, M. G., J. Non-Cryst. Solids 43, 430 (1981).CrossRefGoogle Scholar
28Kissinger, H.E., Anal. Chem. 29, 1702 (1957).CrossRefGoogle Scholar
29Meng, W. J., Nieh, C.W., and Johnson, W. L., Appl. Phys. Lett. 51, 1693 (1987).CrossRefGoogle Scholar
30Newcomb, S. B. and Tu, K. N., Appl. Phys. Lett. 48, 1436 (1986).CrossRefGoogle Scholar