Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-30T20:58:48.608Z Has data issue: false hasContentIssue false

Solidification of Bi2Sr2CaCu2Oy and Bi2Sr1.75Ca0.25CuOy

Published online by Cambridge University Press:  03 March 2011

T.G. Holesinger
Affiliation:
Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439
D.J. Miller
Affiliation:
Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439
H.K. Viswanathan
Affiliation:
Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439
L.S. Chumbley
Affiliation:
Ames Laboratory, Iowa State University, 214 Wilhelm, Ames, Iowa 50011
Get access

Abstract

The solidification processes for the compositions Bi2Sr2CaCu2Oy (2212) and Bi2Sr1.75Ca0.25CuOy (2201) were determined as a function of oxygen partial pressure. During solidification in argon, the superconducting phases were generally not observed to form for either composition. In both cases, the solidus is lowered to approximately 750 °C. Solidification of Bi2Sr1.75Ca0.25CuOy in Ar resulted in a divorced eutectic structure of Bi2Sr2−xCaxOy (22x) and Cu2O while solidification of Bi2Sr2CaCu2Oy in Ar resulted in a divorced eutectic structure of Bi2Sr3−xCaxOy (23x) and Cu2O. Solidification of Bi2Sr1.75Ca0.25CuOy in O2 resulted in large grains of 2201 interspersed with small regions containing the eutectic structure of 22x and CuO/Cu2O. Solidification of Bi2Sr2CaCu2Oy in partial pressures of 1%, 20%, and 100% oxygen resulted in multiphase samples consisting of 2212, 2201, some alkaline-earth cuprates, and both divorced eutectic structures found during solidification in Ar. For both compositions, these latter structures can be attributed to oxygen deficiencies present in the melt regardless of the overpressure of oxygen. These eutectic structures are unstable and convert into the superconducting phases during subsequent anneals in oxygen. The formation process of the 2212 phase during solidification from the melt was determined to proceed through an intermediate state involving the 2201 phase.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Dietderich, D. R., Ullmann, B., Freyhardt, H. C., Kase, J., Kumakura, H., Togano, K., and Maeda, H., Jpn. J. Appl. Phys. 29, L1100 (1990).Google Scholar
2Kase, J., Togano, K., Kumakura, H., Dietderich, D. R., Irisawa, N., Morimoto, T., and Maeda, H., Jpn. J. Appl. Phys. 29, L1096 (1990).CrossRefGoogle Scholar
3Tenbrink, J., Heine, K., and Krauth, H., Cryogenics 30, 422 (1990).CrossRefGoogle Scholar
4Sato, K., Hikata, T., Mukai, H., Ueyama, M., Shibuta, N., Kato, T., Masuda, T., Nagata, M., Iwata, K., and Mitsui, T., IEEE Trans. Mag. 27, 1231 (1991).CrossRefGoogle Scholar
5Kase, J., Irisawa, N., Morimoto, T., Togano, K., Kumakura, H., Dietderich, D. R., and Maeda, H., Appl. Phys. Lett. 56, 970 (1990).CrossRefGoogle Scholar
6Ray, R. D. II and Hellstrom, E. E., Physica C 175, 255 (1991).CrossRefGoogle Scholar
7Oka, Y., Yamamoto, N., Kitaguchi, H., Oda, K., and Takada, J., Jpn. J. Appl. Phys. 28, L213 (1989).CrossRefGoogle Scholar
8Hasegawa, T., Kitamura, T., Kobayashi, H., Kumakura, H., Kitaguchi, H., and Togano, K., Appl. Phys. Lett. 60, 2692 (1992).CrossRefGoogle Scholar
9Polonka, J., Xu, M., Li, Q., Goldman, A. I., and Finnemore, D. K., Appl. Phys. Lett. 59, 3640 (1991).CrossRefGoogle Scholar
10Garbauskas, M. F., Arendt, R. H., Jorgensen, J. D., and Hitter-man, R. L., Appl. Phys. Lett. 58, 2987 (1991).Google Scholar
11Ray, R. D. II and Hellstrom, E. E., Physica C 172, 435 (1991).Google Scholar
12Bock, J. and Preisler, E., Solid State Commun. 72, 453 (1989).CrossRefGoogle Scholar
13Holesinger, T. G., Miller, D. J., and Chumbley, L. S., J. Mater. Res. 7, 1658 (1992).CrossRefGoogle Scholar
14Strobel, P., Korczak, W., and Fourneir, T., Physica C 161, 167174 (1989).Google Scholar
15Bock, J. and Preisler, E., Proc. of ICMC '90 Topical Conference on Materials Aspects of High Temperature Superconductors, May 9–11, 1990, Garmisch-Partenkirchen, p. 215, DGM-Verlag.Google Scholar
16Miller, D. J. and Holesinger, T. G., Applied Superconductivity 1, 121 (1993).CrossRefGoogle Scholar
17Roth, R. S., Rawn, C. J., Ritter, J. J., and Burton, B. P., J. Am. Ceram.Soc. 72, 1545 (1989).Google Scholar
18Roth, R. S., Rawn, C. J., Burton, B. P., and Beech, F., J. Res. Natl.Inst. Stand. Technol. 95, 291 (1990).Google Scholar
19Holesinger, T. G., Miller, D. J., Chumbley, L. S., Kramer, M. J., and Dennis, K. W., Physica C 202, 109 (1992).Google Scholar
20Hong, B. and Mason, T. O., J. Am. Ceram. Soc. 74, 1045 (1991).Google Scholar
21Holesinger, T. G., Miller, D. J., Fleshier, S., and Chumbley, L. S., J. Mates Res. 7, 2035 (1992).Google Scholar
22Holesinger, T. G., Miller, D. J., and Chumbley, L. S., IEEE Trans. 3 (1), 1178 (1993).Google Scholar
23Pope, M. I. and Judd, M. D., Differential Thermal Analysis. (Heyden, London, 1977), p. 53.Google Scholar
24Bock, J., Elschner, S., and Preisler, E., Advances in Superconductivity III, Proc. 3rd Int. Symp. on Superconductivity, November. 1990, Sendai, Japan.Google Scholar