Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-15T02:01:43.075Z Has data issue: false hasContentIssue false

Space-charge-limited-current conduction in heteroepitaxial 3C–SiC (111) on TiC (111)

Published online by Cambridge University Press:  31 January 2011

S.H. Tan
Affiliation:
Advanced Technology Materials, Inc., Danbury, Connecticut 06810
C.P. Beetz Jr.
Affiliation:
Advanced Technology Materials, Inc., Danbury, Connecticut 06810
J.M. Carulli Jr.
Affiliation:
Advanced Technology Materials, Inc., Danbury, Connecticut 06810
B.Y. Lin
Affiliation:
Advanced Technology Materials, Inc., Danbury, Connecticut 06810
D.F. Cummings
Affiliation:
Advanced Technology Materials, Inc., Danbury, Connecticut 06810
Get access

Abstract

Unintentionally doped 3C–SiC (111) films were grown on TiC (111) substrates. The films were characterized by electrical measurements employing Pt Schottky contacts, optical microscopy, and transmission electron microscopy (TEM). The observed current-voltage (I-V) characteristics appear to be dominated by space-charge-limited-current (SCLC) conduction in the films. Analysis of the I-V characteristics has resulted in information pertaining to the electrically active defects in the films. These active defects are believed to be associated with stacking faults and point defects present in the films and contribute to traps at ∼0.656 eV below the conduction band edge. The concentration of traps was found to vary with film thickness and surface morphology.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Davis, R. F., Sitar, Z., Williams, B. E., Kong, H. S., Kim, H. J., Palmour, J. W., Edmond, J. A., Ryu, J., Glass, J. T., and Carter, C. H., Jr., Mater. Sci. Eng. B1, 77 (1988).CrossRefGoogle Scholar
2.Das, K., Kong, H. S., Petit, J. B., Bumgarner, J. W., Davis, R. F., and Matus, L. G., J. ElectroChem Soc. 137, 1598 (1990).CrossRefGoogle Scholar
3.Ashok, S., Srikanth, K., Badzian, A., Badzian, T., and Messier, R., Appl. Phys. Lett. 50, 763 (1987).CrossRefGoogle Scholar
4.Ashok, S., Borrego, J. M., and Gutmann, R. J., J. Appl. Phys. 51, 1076 (1980).CrossRefGoogle Scholar
5.Ashok, S., Lester, A., and Fonash, S. J., IEEE Electron Device Lett. EDL-1 (1980).Google Scholar
6.Lampert, M. A. and Mark, P., Current Injection in Solids (Academic Press, 1970).Google Scholar
7.Beetz, C. P., Jr., Lin, B. Y., Carulli, J. M., Jr., Cummings, D. F., Gordon, D. C., and Nutt, S. R., Trans. First Int. High Temp. Conf., New Mexico, 186 (1991).Google Scholar
8.Rose, A., Phys. Rev. 97, 1538 (1955).CrossRefGoogle Scholar
9.Papanicolaou, N. A., Christou, A., and Gipe, M. L., J. Appl. Phys. 65, 3526 (1989).CrossRefGoogle Scholar
10.Edmond, J. A., Das, K., and Davis, R. F., J. Appl. Phys. 63, 922 (1988).CrossRefGoogle Scholar
11.Li, Yuan and Lin-Chung, P. J., Phys. Rev. B 36, 1130 (1987).CrossRefGoogle Scholar
12.Zhou, Peizhen, Spencer, M. G., Harris, G. L., and Fekade, Konjit, Appl. Phys. Lett. 50, 1384 (1987).CrossRefGoogle Scholar
13.Gmelin Handbook of Inorganic Chemistry Supplement, 8th ed. (Springer-Verlag, Berlin, 1984), Vol. B2.Google Scholar