Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-30T23:21:49.787Z Has data issue: false hasContentIssue false

Stability and Phase Transformations of Icosahedral Phase in a 41.5Zr41.5Ti17Ni Alloy

Published online by Cambridge University Press:  31 January 2011

S. Yi
Affiliation:
Center for Noncrystalline Materials, Department of Metallurgical Engineering, Yonsei University, Seoul, Korea
D. H. Kim*
Affiliation:
Center for Noncrystalline Materials, Department of Metallurgical Engineering, Yonsei University, Seoul, Korea
*
a)Address all correspondence to this author. e-mail: dohkim@bubble.yonsei.ac.kr
Get access

Abstract

Phase stability and transformations of the icosahedral phase (I-phase) in a 41.5Zr41.5Ti17Ni alloy were investigated using melt-spun ribbons and arc-melted bulk samples. A perfect I-phase can be formed directly from liquid through the melt-spinning technique. The I-phase formed in the ribbon is thermodynamically stable and transforms to W-phase, a 1/1 rational approximant above 565 °C. Formation of the perfect I-phase during annealing treatment of the arc-melted sample is very sluggish. Various types of approximants exist as intermediate states for the transformation of crystalline phases to a perfect I-phase.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Shechtman, D., Blech, I., Gratias, D., and Cahn, J.W., Phys. Rev. Lett. 53, 1951 (1984).CrossRefGoogle Scholar
2.Tsai, A.P., Inoue, A., and Masumoto, T., Jpn. J. Appl. Phys. 26, L1505 (1987).CrossRefGoogle Scholar
3.Ohashi, W. and Spaepen, F., Nature 330, 555 (1987).CrossRefGoogle Scholar
4.Kelton, K.F., Kim, W.J., and Stroud, R.M., Appl. Phys. Lett. 70, 3230 (1997).CrossRefGoogle Scholar
5.Urban, K., Feuerbacher, M., Wollgarten, M., Bartsch, M., and Messerschmidt, U., in Physical Properties of Quasicrystals, Springer Series in Solid State Sciences (Springer-Verlag, Berlin, Germany, 1999), p. 361.Google Scholar
6.Liu, P., and Nilsson, J-O., in New Horizons in Quasicrystals, edited by Goldman, A.I., Sordelet, D.J., Thiel, P.A., and Dubois, J.M. (World Scientific, Singapore, 1997), p. 264.Google Scholar
7.Molokanov, V.V. and Chebotnikov, V.N., J. Non-Cryst. Solids 117/118, 789 (1990).CrossRefGoogle Scholar
8.Kim, W.J., Gibbson, P.C., and Kelton, K.F., Philos. Mag. Lett. 76(3), 199 (1997).CrossRefGoogle Scholar
9.Stroud, R.M., Kelton, K.F., and Misture, S.T., J. Mater. Res. 12, 434 (1997).CrossRefGoogle Scholar
10.Mukhopadhyay, N.K., Ishihara, K.N., Ranganathan, S., and Chattopadhyay, K., Acta Metall. Mater, 39, 1151 (1991).CrossRefGoogle Scholar
11.Waseda, A., Edagawa, K., and Ino, H., Philos. Mag. Lett. 62, 183 (1990).CrossRefGoogle Scholar
12.Lubensky, T.C., Ramaswamy, S., and Toner, J., Phys. Rev. B: Solid State 32, 7444 (1985).CrossRefGoogle Scholar
13.Socolar, J.E.S, Lubensky, T.C., and Steinhardt, P.J., Phys. Rev. B: Solid State 34, 3345 (1986).CrossRefGoogle Scholar
14.Mai, Z.H., Xu, L., Wang, N., Kuo, K.H., Jin, Z.C., and Cheng, G., Phys. Rev. B: Solid State 40, 12183 (1989).CrossRefGoogle Scholar
15.Bancel, P.A., Philos. Mag. Lett. 67, 43 (1993).CrossRefGoogle Scholar
16.Zhang, Z., Li, N.C., and Urban, K., J. Mater. Res. 6, 366 (1991).CrossRefGoogle Scholar