Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-28T00:30:17.508Z Has data issue: false hasContentIssue false

Stability of the Tl-1223 phases

Published online by Cambridge University Press:  31 January 2011

T. L. Aselage
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185–1421
E. L. Venturini
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185–1421
J. A. Voigt
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185–1421
D. J. Miller
Affiliation:
Argonne National Laboratory, Argonne, Illinois 60439
Get access

Abstract

The thermodynamic stability of TlBa2Ca2Cu3O9–y (1223) and substitutionally related phases has been studied by performing extended high-temperature anneals in a two-zone furnace. This approach allows for independent control of each of the thermodynamic variables: the oxygen and thallous oxide partial pressures [P(O2) and P(Tl2O)], the sample temperature, and the sample composition. P(Tl2O) determines which of several superconducting phases form in the unsubstituted Tl–Ba–Ca–Cu–O system. TlBa2Ca2Cu3O9–y is stable only within a narrow window of P(Tl2O). Partially replacing Tl with Pb and Ba with Sr substantially increases the stability of the 1223 phase. The composition (TlxPb0.5) (Sr1.6Ba0.4)Ca2Cu3O9–y yields only the 1223 phase under two-zone conditions when P(Tl2O) exceeds a lower bound. The stability of Pb- and Sr-substituted 1223 relative to the 1212 phase is related to the substitutional stoichiometry, rather than P(Tl2O).

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.DeLuca, J. A., Karas, P. L., Tkaczyk, J.E., Bednarczyk, P. J., Garbauskas, M. F., Briant, C. L., and Sorensen, D. B., Physica C 205, 21 (1993);CrossRefGoogle Scholar
Tkaczyk, J.E., DeLuca, J.A., Karas, P. L., Bednarczyk, P. J., Garbauskas, M. F., Arendt, R. H., Lay, K. W., and Moodera, J.S., Appl. Phys. Lett. 61, 610 (1992).CrossRefGoogle Scholar
2.Doi, T., Okada, M., Soeta, A., Yuasa, T., Aihara, K., Kamo, T., and Matsuda, S. P., Physica C 183, 67 (1991);Google Scholar
Kamo, T., Doi, T., Soeta, A., Yuasa, T., Inoue, N., Aihara, K., and Matsuda, S-P., Appl. Phys. Lett. 59, 3186 (1991);Google Scholar
Yuasa, T., Doi, T., Soeta, A., Inoue, N., Aihara, K., Kamo, T., and Matsuda, S. P., Jpn. J. Appl. Phys. 31, Pt. 2, L1176 (1992).Google Scholar
3.Ren, Z. F. and Wang, J. H., Appl. Phys. Lett. 61, 1715 (1992);CrossRefGoogle Scholar
Ren, Z. F. and Wang, J. H., Appl. Phys. Lett. 62, 3025 (1993).Google Scholar
4.Schulz, D. L., Parilla, P. A., Ginley, D. S., Voigt, J.A., and Roth, E. P., Appl. Phys. Lett. 65, 2472 (1994).CrossRefGoogle Scholar
5.Kim, D. H., Gray, K. E., Kampwirth, R. T., Smith, J.C., Richeson, D. S., Marks, T. J., Kang, J.H., Talvacchio, J., and Eddy, M., Physica C 177, 431 (1991);CrossRefGoogle Scholar
Nabatame, T., Saito, Y., Aihara, K., Kamo, T., and Matsuda, S. P., Jpn. J. Appl. Phys. 32, Pt. 2, L484 (1993).CrossRefGoogle Scholar
6.Soeta, A., Suzuki, T., Takeuchi, S., Kamo, T., Usami, K., and Matsuda, S. P., Jpn. J. Appl. Phys. 28, L1186 (1989).CrossRefGoogle Scholar
7.Morgan, P. E. D., Doi, T., and Housley, R. M., Physica C 213, 438 (1993).CrossRefGoogle Scholar
8.Subramanian, M. A., Torardi, C. C., Gopalakrishnan, J., Gai, P. L., Calabrese, J. C., Askew, T. R., Flippen, R. B., and Sleight, A. W., Science 242, 249 (1988).CrossRefGoogle Scholar
9.Aselage, T. L., Voigt, J.A., and Keefer, K. D., J. Am. Ceram. Soc. 73, 3345 (1990).CrossRefGoogle Scholar
10.Aselage, T. L., Venturini, E. L., Van Deusen, S. B., Headley, T. J., Eatough, M. O., and Voigt, J.A., Physica C 203, 25 (1992).Google Scholar
11.Aselage, T. L., Venturini, E. L., and Van, S. B.Deusen, J. Appl. Phys. 75, 1023 (1994).CrossRefGoogle Scholar
12.Holstein, W. L., J. Phys. Chem. 97, 4224 (1993).CrossRefGoogle Scholar
13.Aselage, T. L., Venturini, E. L., Voigt, J. A., Lamppa, D. L., and Van, S. B.Deusen, J. Mater. Res. 9, 2470 (1994).CrossRefGoogle Scholar
14.Morgan, P. E. D., Doi, T., Housely, R. M., and Porter, J. R., in Advances in Superconductivity V, edited by Bando, Y. and Ymauchi, H. (Springer-Verlag, Berlin, 1993), p. 391.CrossRefGoogle Scholar
15.Li, Y. F., Sheng, Z. Z., Chen, N., Dorris, S. E., Lanagan, M. T., and Goretta, K. C., Mater. Res. Bull. 29, 1057 (1994).CrossRefGoogle Scholar
16.Kwak, J. F., Venturini, E. L., Ginley, D. S., and Fu, W., in Novel Superconductivity, edited by Wolf, S. A. and Kresin, V. Z. (Plenum, New York, 1987), p. 983.Google Scholar
17.Aselage, T. L., Physica C 233, 292 (1994);CrossRefGoogle Scholar
Aselage, T. L. and Keefer, K. D., J. Mater. Res. 3, 1279 (1988).CrossRefGoogle Scholar
18. JCPDS Card no. 43–25.Google Scholar
19. JCPDS Card no. 42345.Google Scholar
20.Holstein, W. L., Parisi, L. A., Fincher, C. R., and Gai, P. L., Physica C 212, 110 (1993).CrossRefGoogle Scholar
21.Paranthaman, M., Heatherly, D. E., and Martin, P. M., Mater. Res. Bull. (in press).Google Scholar
22.Liu, R. S., Wu, S. F., Shy, D. S., Hu, S. F., and Jefferson, D. A., Physica C 222, 278 (1994).CrossRefGoogle Scholar