Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-02T20:38:15.754Z Has data issue: false hasContentIssue false

Stabilization and hyperfine characterization of metastable tetragonal ZrO2

Published online by Cambridge University Press:  31 January 2011

M. C. Caracoche
Affiliation:
Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Casilla de Correo N° 67, (1900) La Plata, Argentina
M. T. Dova
Affiliation:
Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Casilla de Correo N° 67, (1900) La Plata, Argentina
A. R. López García
Affiliation:
Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Casilla de Correo N° 67, (1900) La Plata, Argentina
Get access

Abstract

Hydrolyzed ZrCl4 and ZrO2 · nH2O have been used as starting compounds in a time-differential perturbed-angular correlation (TDPAC) investigation on the stabilization and thermal evolution of the metastable tetragonal form of ZrO2. This phase, of quadrupole parameters very similar to those reported for the high temperature tetragonal form, emerges at moderate temperatures previous to the monoclinic phase, when starting from hydrolyzed ZrCl4 and from ZrO2 · 2H2O treated previously at 673 K. Though in all cases zirconia appears initially as an amorphous compound characterized by unique hyperfine parameters, two different precursors have been observed to exist immediately previous to the occurrence of either the monoclinic or the metastable tetragonal crystal phases. Each of them exhibits a quadrupole frequency identical with and an asymmetry parameter higher than the ones characterizing the forthcoming corresponding crystal phases. A crystallization enthalpy of (33 ± 5) kJ/mol has been determined for the formation of the metastable tetragonal phase out of its precursor.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Lecloux, A., Verleye, P., Bronckart, J., Noville, F., Marchert, P., and Pirard, J. P., Reactivity of Solids 4, 309 (1988).CrossRefGoogle Scholar
2Ruff, O. and Ebert, F., A. Anorg. Allg. Chem. 180, 19 (1929).CrossRefGoogle Scholar
3Caracoche, M. C., Dova, M. T., García, A. R. López, Martínez, J. A., and Rivas, P. C., Hyp. Int. 39, 117 (1988).CrossRefGoogle Scholar
4Clark, G. L. and Reynolds, D. H., Ind. and Eng. Chem. 29, 711 (1937).CrossRefGoogle Scholar
5Boganov, A. G., Rudenko, V. S., and Makarov, L. P., Dokl. Akad. Nauk SSSR 160, 1065 (1965).Google Scholar
6Cyprès, R., Wollest, R., and Raueq, J., Ber. Deut. Keram. Ges 40, 527 (1963).Google Scholar
7Weber, B. C. and Schwartz, M. A., Ber. Deut. Keram. Ges 34, 391 (1957).Google Scholar
8Srinivasan, R., Harris, M. B., Simpson, S. F., De Angelis, R. J., and Davis, B. H., J. Mater. Res. 3, 787 (1988).CrossRefGoogle Scholar
9 Fluka AG, Chemische Fabrik, CH-9470 Buchs, Schweiz.Google Scholar
10Komissarova, L. N., Plyushchev, V. E., and Kremenskaya, I. N., Zh. Neorg. Khim. [Russ. J. Inorg. Chem. 5, 281 (1960)].Google Scholar
11Takagi, S., J. Chem. Soc. Japan, Pure Chem. Sect. 75, 673 (1954).Google Scholar
12Livage, J., Doi, K., and Mazieres, C., J. Am. Ceram. Soc. 51, 349 (1968).CrossRefGoogle Scholar
13Rijnten, H.Th., Formation, Preparation and Properties of Hydrous Zirconia in Physical Chemistry and Aspects of Adsorbents and Catalysts, Edited by Linsen, B. G. (Academic Press, New York, 1970), pp. 315372.Google Scholar
14Blesa, M. A., Maroto, A. J. G., Passagio, S. I., Figliola, N. E., and Rigotti, G., J. Mater. Sci. 20, 4601 (1985).CrossRefGoogle Scholar
15Mitsuhashi, T., Ichihara, M., and Tatsuke, N., J. Am. Ceram. Soc. 57, 97 (1973).CrossRefGoogle Scholar
16Rivas, P. C., Caracoche, M. C., Martinez, J. A., Dova, M. T., and García, A. R. López, Hyp. Int. 30, 49 (1986).CrossRefGoogle Scholar
17Komissarova, L. N., Simanov, Yu. P., and Vladimirova, Z. A., Zh. Neorg. Khim. 5, 1413 (1960) [Russ. J. Inorg. Chem. 5, 687 (1960)].Google Scholar