Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T13:00:29.520Z Has data issue: false hasContentIssue false

Stabilizing and scaling up carbon-based perovskite solar cells

Published online by Cambridge University Press:  27 July 2017

Haining Chen*
Affiliation:
School of Materials Science and Engineering, Beihang University, Beijing 100191, People’s Republic of China
Shihe Yang*
Affiliation:
Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
*
a) Address all correspondence to these authors. e-mail: chenhaining@buaa.edu.cn
b) e-mail: chsyang@ust.hk
Get access

Abstract

Organometal trihalide perovskite solar cells (PSCs) have sparked a frantic excitement in the scientific community because they can achieve high power conversion efficiencies (PCEs) even when fabricated by low-cost solution-processing technologies. However, the poor stability of PSCs has seriously hindered their commercialization. Among various kinds of PSCs, carbon-based PSCs without hole transport materials (C-PSCs) seem to be the most promising for addressing the stability issue because carbon materials are stable, inert to ion migration, and inherently water-resistant. Concurrent with the steady rise in PCE of C-PSCs, great progresses have also been attained on the device stability and scaling-up fabrication of C-PSCs, which have well signified the possible commercialization of PSCs in the near future. In this review, we will summarize these progresses with a view of exposing the promising prospect. We start by collating recent stability testing results of C-PSCs with reference to those of HTM-PSCs. Then, we update the research status on large-scale C-PSCs and their associated scalable fabrication technologies. Finally, we identify main issues to be addressed alongside future research directions.

Type
Invited Review
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Gary L. Messing

References

REFERENCES

NREL: (2017). Available at: https://www.nrel.gov/pv/assets/images/efficiency-chart.png (accessed July, 2017).Google Scholar
Li, X., Bi, D., Yi, C., Decoppet, J.D., Luo, J., Zakeeruddin, S.M., Hagfeldt, A., and Gratzel, M.: A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells. Science 353, 58 (2016).CrossRefGoogle ScholarPubMed
Kojima, A., Teshima, K., Shirai, Y., and Miyasaka, T.: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050 (2009).CrossRefGoogle ScholarPubMed
Yang, W.S., Noh, J.H., Jeon, N.J., Kim, Y.C., Ryu, S., Seo, J., and Seok, S.I.: Solar cells high-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348, 1234 (2015).CrossRefGoogle ScholarPubMed
Bai, Y., Chen, H.N., Xiao, S., Xue, Q.F., Zhang, T., Zhu, Z.L., Li, Q., Hu, C., Yang, Y., Hu, Z.C., Huang, F., Wong, K.S., Yip, H.L., and Yang, S.H.: Effects of a molecular monolayer modification of NiO nanocrystal layer surfaces on perovskite crystallization and interface contact toward faster hole extraction and higher photovoltaic performance. Adv. Funct. Mater. 26, 2950 (2016).CrossRefGoogle Scholar
Yan, K., Long, M., Zhang, T., Wei, Z., Chen, H., Yang, S., and Xu, J.: Hybrid halide perovskite solar cell precursors: Colloidal chemistry and coordination engineering behind device processing for high efficiency. J. Am. Chem. Soc. 137, 4460 (2015).CrossRefGoogle ScholarPubMed
Im, J.H., Jang, I.H., Pellet, N., Gratzel, M., and Park, N.G.: Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nat. Nanotechnol. 9, 927 (2014).CrossRefGoogle ScholarPubMed
Jeon, N.J., Noh, J.H., Kim, Y.C., Yang, W.S., Ryu, S., and Seok, S.I.: Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 13, 897 (2014).CrossRefGoogle ScholarPubMed
Zhang, T., Chen, H., Bai, Y., Xiao, S., Zhu, L., Hu, C., Xue, Q., and Yang, S.: Understanding the relationship between ion migration and the anomalous hysteresis in high-efficiency perovskite solar cells: A fresh perspective from halide substitution. Nano Energy 26, 620 (2016).CrossRefGoogle Scholar
Bi, D., Tress, W., Dar, M.I., Gao, P., Luo, J., Renevier, C., Schenk, K., Abate, A., Giordano, F., Correa Baena, J.P., Decoppet, J.D., Zakeeruddin, S.M., Nazeeruddin, M.K., Gratzel, M., and Hagfeldt, A.: Efficient luminescent solar cells based on tailored mixed-cation perovskites. Sci. Adv. 2, e1501170 (2016).CrossRefGoogle ScholarPubMed
Bi, D., Yi, C., Luo, J., Décoppet, J-D., Zhang, F., Zakeeruddin, S.M., Li, X., Hagfeldt, A., and Grätzel, M.: Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nat. Energy 1, 16142 (2016).CrossRefGoogle Scholar
Zhou, Y. and Zhu, K.: Perovskite solar cells shine in the “valley of the sun”. ACS Energy Lett. 1(1), 64 (2016).CrossRefGoogle Scholar
Sun, S.Y., Salim, T., Mathews, N., Duchamp, M., Boothroyd, C., Xing, G.C., Sum, T.C., and Lam, Y.M.: The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. Energy Environ. Sci. 7, 399 (2014).CrossRefGoogle Scholar
Ponseca, C.S. Jr., Savenije, T.J., Abdellah, M., Zheng, K., Yartsev, A., Pascher, T., Harlang, T., Chabera, P., Pullerits, T., Stepanov, A., Wolf, J.P., and Sundstrom, V.: Organometal halide perovskite solar cell materials rationalized: Ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination. J. Am. Chem. Soc. 136, 5189 (2014).CrossRefGoogle ScholarPubMed
Dong, Q., Fang, Y., Shao, Y., Mulligan, P., Qiu, J., Cao, L., and Huang, J.: Electron-hole diffusion lengths >175 mum in solution-grown CH3NH3PbI3 single crystals. Science 347, 967 (2015).CrossRefGoogle ScholarPubMed
Shi, D., Adinolfi, V., Comin, R., Yuan, M., Alarousu, E., Buin, A., Chen, Y., Hoogland, S., Rothenberger, A., Katsiev, K., Losovyj, Y., Zhang, X., Dowben, P.A., Mohammed, O.F., Sargent, E.H., and Bakr, O.M.: Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519 (2015).CrossRefGoogle ScholarPubMed
Lim, K-G., Ahn, S., Kim, Y-H., Qi, Y., and Lee, T-W.: Universal energy level tailoring of self-organized hole extraction layers in organic solar cells and organic–inorganic hybrid perovskite solar cells. Energy Environ. Sci. 9, 932 (2016).CrossRefGoogle Scholar
Stranks, S.D., Eperon, G.E., Grancini, G., Menelaou, C., Alcocer, M.J., Leijtens, T., Herz, L.M., Petrozza, A., and Snaith, H.J.: Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341 (2013).CrossRefGoogle Scholar
Xing, G., Mathews, N., Sun, S., Lim, S.S., Lam, Y.M., Gratzel, M., Mhaisalkar, S., and Sum, T.C.: Long-range balanced electron- and hole-transport lengths in organic–inorganic CH3NH3PbI3 . Science 342, 344 (2013).CrossRefGoogle ScholarPubMed
D’Innocenzo, V., Grancini, G., Alcocer, M.J., Kandada, A.R., Stranks, S.D., Lee, M.M., Lanzani, G., Snaith, H.J., and Petrozza, A.: Excitons versus free charges in organo-lead tri-halide perovskites. Nat. Commun. 5, 3586 (2014).CrossRefGoogle ScholarPubMed
Berhe, T.A., Su, W.N., Chen, C.H., Pan, C.J., Cheng, J.H., Chen, H.M., Tsai, M.C., Chen, L.Y., Dubale, A.A., and Hwang, B.J.: Organometal halide perovskite solar cells: Degradation and stability. Energy Environ. Sci. 9, 323 (2016).CrossRefGoogle Scholar
Docampo, P. and Bein, T.: A long-term view on perovskite optoelectronics. Acc. Chem. Res. 49, 339 (2016).CrossRefGoogle ScholarPubMed
Shahbazi, M. and Wang, H.: Progress in research on the stability of organometal perovskite solar cells. J. Sol. Energy 123, 74 (2016).CrossRefGoogle Scholar
Wang, D., Wright, M., Elumalai, N.K., and Uddin, A.: Stability of perovskite solar cells. Sol. Energy Mater. Sol. Cells 147, 255 (2016).CrossRefGoogle Scholar
Ye, M.D., Hong, X.D., Zhang, F.Y., and Liu, X.Y.: Recent advancements in perovskite solar cells: Flexibility, stability and large scale. J. Mater. Chem. A 4, 6755 (2016).CrossRefGoogle Scholar
Back, H., Kim, G., Kim, J., Kong, J., Kim, T.K., Kang, H., Kim, H., Lee, J., Lee, S., and Lee, K.: Achieving long-term stable perovskite solar cells via ion neutralization. Energy Environ. Sci. 9, 1258 (2016).CrossRefGoogle Scholar
Domanski, K., Correa-Baena, J-P., Mine, N., Nazeeruddin, M.K., Abate, A., Saliba, M., Tress, W., Hagfeldt, A., and Grätzel, M.: Not all that glitters is gold: Metal migration-induced degradation in perovskite solar cells. ACS Nano 10, 6306 (2016).CrossRefGoogle ScholarPubMed
Etgar, L., Gao, P., Xue, Z., Peng, Q., Chandiran, A.K., Liu, B., Nazeeruddin, M.K., and Gratzel, M.: Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J. Am. Chem. Soc. 134, 17396 (2012).CrossRefGoogle ScholarPubMed
Ku, Z., Rong, Y., Xu, M., Liu, T., and Han, H.: Full printable processed mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells with carbon counter electrode. Sci. Rep. 3, 3132 (2013).CrossRefGoogle ScholarPubMed
Mei, A., Li, X., Liu, L., Ku, Z., Liu, T., Rong, Y., Xu, M., Hu, M., Chen, J., Yang, Y., Gratzel, M., and Han, H.: A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science 345, 295 (2014).CrossRefGoogle ScholarPubMed
Wei, Z., Chen, H., Yan, K., and Yang, S.: Inkjet printing and instant chemical transformation of a CH3NH3PbI3/nanocarbon electrode and interface for planar perovskite solar cells. Angew. Chem. 53, 13239 (2014).CrossRefGoogle ScholarPubMed
Zhang, F., Yang, X., Wang, H., Cheng, M., Zhao, J., and Sun, L.: Structure engineering of hole-conductor free perovskite-based solar cells with low-temperature-processed commercial carbon paste as cathode. ACS Appl. Mater. Interfaces 6, 16140 (2014).CrossRefGoogle ScholarPubMed
Chen, H.N., Wei, Z.H., Zheng, X.L., and Yang, S.H.: A scalable electrodeposition route to the low-cost, versatile and controllable fabrication of perovskite solar cells. Nano Energy 15, 216 (2015).CrossRefGoogle Scholar
Wei, Z.H., Zheng, X.L., Chen, H.N., Long, X., Wang, Z.L., and Yang, S.H.: A multifunctional C plus epoxy/Ag-paint cathode enables efficient and stable operation of perovskite solar cells in watery environments. J. Mater. Chem. A 3, 16430 (2015).CrossRefGoogle Scholar
Laban, W.A. and Etgar, L.: Depleted hole conductor-free lead halide iodide heterojunction solar cells. Energy Environ. Sci. 6, 3249 (2013).CrossRefGoogle Scholar
Ku, Z., Xia, X., Shen, H., Tiep, N.H., and Fan, H.J.: A mesoporous nickel counter electrode for printable and reusable perovskite solar cells. Nanoscale 7, 13363 (2015).CrossRefGoogle ScholarPubMed
Wei, Z.H., Yan, K.Y., Chen, H.N., Yi, Y., Zhang, T., Long, X., Li, J.K., Zhang, L.X., Wang, J.N., and Yang, S.H.: Cost-efficient clamping solar cells using candle soot for hole extraction from ambipolar perovskites. Energy Environ. Sci. 7, 3326 (2014).CrossRefGoogle Scholar
Chen, H., Wei, Z., Yan, K., Yi, Y., Wang, J., and Yang, S.: Liquid phase deposition of TiO2 nanolayer affords CH3NH3PbI3/nanocarbon solar cells with high open-circuit voltage. Faraday Discuss. 176, 271 (2014).CrossRefGoogle ScholarPubMed
Chen, H. and Yang, S.: High-quality perovskite in thick scaffold: A core issue for hole transport material-free perovskite solar cells. Sci. Bull. 61, 1680 (2016).CrossRefGoogle Scholar
Zhou, H., Shi, Y., Dong, Q., Zhang, H., Xing, Y., Wang, K., Du, Y., and Ma, T.: Hole-conductor-free, metal-electrode-free TiO2/CH3NH3PbI3 heterojunction solar cells based on a low-temperature carbon electrode. J. Phys. Chem. Lett. 5, 3241 (2014).CrossRefGoogle ScholarPubMed
Chen, H. and Yang, S.: Carbon-based perovskite solar cells without hole transport materials: The front runner to the market? Adv. Mater. 29, 1603994 (2017).CrossRefGoogle ScholarPubMed
Rong, Y., Hou, X., Hu, Y., Mei, A., Liu, L., Wang, P., and Han, H.: Synergy of ammonium chloride and moisture on perovskite crystallization for efficient printable mesoscopic solar cells. Nat. Commun. 8, 14555 (2017).CrossRefGoogle ScholarPubMed
Zhang, H., Wang, H., Williams, S.T., Xiong, D., Zhang, W., Chueh, C-C., Chen, W., and Jen, A.K.Y.: SrCl2 derived perovskite facilitating a high efficiency of 16% in hole-conductor-free fully printable mesoscopic perovskite solar cells. Adv. Mater. 29, 1606608 (2017).CrossRefGoogle ScholarPubMed
Zheng, X., Chen, H., Li, Q., Yang, Y., Wei, Z., Bai, Y., Qiu, Y., Zhou, D., Wong, K.S., and Yang, S.: Boron doping of multiwalled carbon nanotubes significantly enhances hole extraction in carbon-based perovskite solar cells. Nano Lett. 17, 2496 (2017).CrossRefGoogle ScholarPubMed
Chen, H., Zheng, X., Li, Q., Yang, Y., Xiao, S., Hu, C., Bai, Y., Zhang, T., Wong, K.S., and Yang, S.: An amorphous precursor route to the conformable oriented crystallization of CH3NH3PbBr3 in mesoporous scaffolds: Toward efficient and thermally stable carbon-based perovskite solar cells. J. Mater. Chem. A 4, 12897 (2016).CrossRefGoogle Scholar
Chen, H.N., Wei, Z.H., He, H.X., Zheng, X.L., Wong, K.S., and Yang, S.H.: Solvent engineering boosts the efficiency of paintable carbon-based perovskite solar cells to beyond 14%. Adv. Energy Mater. 6, 1502087 (2016).CrossRefGoogle Scholar
Chang, X., Li, W., Chen, H., Zhu, L., Liu, H., Geng, H., Xiang, S., Liu, J., Zheng, X., Yang, Y., and Yang, S.: Colloidal precursor-induced growth of ultra-even CH3NH3PbI3 for high-performance paintable carbon-based perovskite solar cells. ACS Appl. Mater. Interfaces 8, 30184 (2016).CrossRefGoogle ScholarPubMed
Sheng, Y., Hu, Y., Mei, A., Jiang, P., Hou, X., Duan, M., Hong, L., Guan, Y., Rong, Y., Xiong, Y., and Han, H.: Enhanced electronic properties in CH3NH3PbI3 via LiCl mixing for hole-conductor-free printable perovskite solar cells. J. Mater. Chem. A 4, 16731 (2016).CrossRefGoogle Scholar
Chan, C.Y., Wang, Y.Y., Wu, G.W., and Diau, E.W.G.: Solvent-extraction crystal growth for highly efficient carbon-based mesoscopic perovskite solar cells free of hole conductors. J. Mater. Chem. A 4, 3872 (2016).CrossRefGoogle Scholar
Chen, W., Wu, Y., Yue, Y., Liu, J., Zhang, W., Yang, X., Chen, H., Bi, E., Ashraful, I., Gratzel, M., and Han, L.: Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 350, 944 (2015).CrossRefGoogle ScholarPubMed
Li, X., Tschumi, M., Han, H.W., Babkair, S.S., Alzubaydi, R.A., Ansari, A.A., Habib, S.S., Nazeeruddin, M.K., Zakeeruddin, S.M., and Gratzel, M.: Outdoor performance and stability under elevated temperatures and long-term light soaking of triple-layer mesoporous perovskite photovoltaics. Energy Technol. 3, 551 (2015).CrossRefGoogle Scholar
Baranwal, A.K., Kanaya, S., Peiris, T.A.N., Mizuta, G., Nishina, T., Kanda, H., Miyasaka, T., Segawa, H., and Ito, S.: 100 °C thermal stability of printable perovskite solar cells using porous carbon counter electrodes. ChemSusChem 9, 2517 (2016).CrossRefGoogle ScholarPubMed
Hu, Y., Si, S., Mei, A., Rong, Y., Liu, H., Li, X., and Han, H.: Stable large-area (10 × 10 cm2) printable mesoscopic perovskite module exceeding 10% efficiency. Sol. RRL 1, 1600019 (2017).CrossRefGoogle Scholar
Bella, F., Griffini, G., Correa-Baena, J-P., Saracco, G., Grätzel, M., Hagfeldt, A., Turri, S., and Gerbaldi, C.: Improving efficiency and stability of perovskite solar cells with photocurable fluoropolymers. Science 354, 203 (2016).CrossRefGoogle ScholarPubMed
Tan, H., Jain, A., Voznyy, O., Lan, X., Garcia de Arquer, F.P., Fan, J.Z., Quintero-Bermudez, R., Yuan, M., Zhang, B., Zhao, Y., Fan, F., Li, P., Quan, L.N., Zhao, Y., Lu, Z.H., Yang, Z., Hoogland, S., and Sargent, E.H.: Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science 355, 722 (2017).CrossRefGoogle ScholarPubMed
Saliba, M., Matsui, T., Domanski, K., Seo, J.Y., Ummadisingu, A., Zakeeruddin, S.M., Correa-Baena, J.P., Tress, W.R., Abate, A., Hagfeldt, A., and Gratzel, M.: Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 354, 206 (2016).CrossRefGoogle ScholarPubMed
Tsai, H., Nie, W., Blancon, J-C., Stoumpos, C.C., Asadpour, R., Harutyunyan, B., Neukirch, A.J., Verduzco, R., Crochet, J.J., Tretiak, S., Pedesseau, L., Even, J., Alam, M.A., Gupta, G., Lou, J., Ajayan, P.M., Bedzyk, M.J., Kanatzidis, M.G., and Mohite, A.D.: High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature 536, 312 (2016).CrossRefGoogle ScholarPubMed
Shin, S.S., Yeom, E.J., Yang, W.S., Hur, S., Kim, M.G., Im, J., Seo, J., Noh, J.H., and Seok, S.I.: Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable perovskite solar cells. Science 356, 167 (2017).CrossRefGoogle ScholarPubMed
Wei, Z.H., Chen, H.N., Yan, K.Y., Zheng, X.L., and Yang, S.H.: Hysteresis-free multi-walled carbon nanotube-based perovskite solar cells with a high fill factor. J. Mater. Chem. A 3, 24226 (2015).CrossRefGoogle Scholar
Yu, Z.H., Chen, B.L., Liu, P., Wang, C.L., Bu, C.H., Cheng, N.A., Bai, S.H., Yan, Y.F., and Zhao, X.Z.: Stable organic–inorganic perovskite solar cells without hole-conductor layer achieved via cell structure design and contact engineering. Adv. Funct. Mater. 26, 4866 (2016).CrossRefGoogle Scholar
Priyadarshi, A., Haur, L.J., Murray, P., Fu, D., Kulkarni, S., Xing, G., Sum, T.C., Mathews, N., and Mhaisalkar, S.G.: A large area (70 cm2) monolithic perovskite solar module with a high efficiency and stability. Energy Environ. Sci. 9, 3687 (2016).CrossRefGoogle Scholar
Li, S-G., Jiang, K-J., Su, M-J., Cui, X-P., Huang, J-H., Zhang, Q-Q., Zhou, X-Q., Yang, L-M., and Song, Y-L.: Inkjet printing of CH3NH3PbI3 on a mesoscopic TiO2 film for highly efficient perovskite solar cells. J. Mater. Chem. A 3, 9092 (2015).CrossRefGoogle Scholar
Hwang, K., Jung, Y-S., Heo, Y-J., Scholes, F.H., Watkins, S.E., Subbiah, J., Jones, D.J., Kim, D-Y., and Vak, D.: Toward large scale roll-to-roll production of fully printed perovskite solar cells. Adv. Mater. 27, 1241 (2015).CrossRefGoogle ScholarPubMed
Longhua, C., Lusheng, L., Jifeng, W., Bin, D., Lili, G., and Bin, F.: Large area perovskite solar cell module. J. Semicond. 38, 014006 (2017).Google Scholar
Zhou, Z., Wang, Z., Zhou, Y., Pang, S., Wang, D., Xu, H., Liu, Z., Padture, N.P., and Cui, G.: Methylamine-gas-induced defect-healing behavior of CH3NH3PbI3 thin films for perovskite solar cells. Angew. Chem. 127, 9841 (2015).CrossRefGoogle Scholar
Pang, S., Zhou, Y., Wang, Z., Yang, M., Krause, A.R., Zhou, Z., Zhu, K., Padture, N.P., and Cui, G.: Transformative evolution of organolead triiodide perovskite thin films from strong room-temperature solid-gas interaction between HPbI3–CH3NH2 precursor pair. J. Am. Chem. Soc. 138, 750 (2016).CrossRefGoogle ScholarPubMed
Zhao, Y. and Zhu, K.: Optical bleaching of perovskite (CH3NH3)PbI3 through room-temperature phase transformation induced by ammonia. Chem. Commun. 50, 1605 (2014).CrossRefGoogle ScholarPubMed
Xiao, Z., Dong, Q., Bi, C., Shao, Y., Yuan, Y., and Huang, J.: Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement. Adv. Mater. 26, 6503 (2014).CrossRefGoogle ScholarPubMed
Wu, Y., Chen, W., Yue, Y., Liu, J., Bi, E., Yang, X., Islam, A., and Han, L.: Consecutive morphology controlling operations for highly reproducible mesostructured perovskite solar cells. ACS Appl. Mater. Interfaces 7, 20707 (2015).CrossRefGoogle ScholarPubMed