Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T21:25:54.976Z Has data issue: false hasContentIssue false

Strain dependence of the thermoelectric performance of porous armchair silicene nanoribbons

Published online by Cambridge University Press:  11 November 2019

Sukhdeep Kaur
Affiliation:
Department of Electronics Technology, Guru Nanak Dev University, Amritsar, Punjab 143005, India
Deep Kamal Kaur Randhawa
Affiliation:
Department of Electronics and Communication Engineering, Guru Nanak Dev University, RC Jalandhar, Ladhewali, Punjab 144007, India
Sukhleen Bindra Narang*
Affiliation:
Department of Electronics Technology, Guru Nanak Dev University, Amritsar, Punjab 143005, India
*
a)Address all correspondence to this author. e-mail: sukhleen2@yahoo.com
Get access

Abstract

In this article, the strain-dependent thermoelectric performance of circular porous armchair silicene nanoribbons (ASiNRs) under uniaxial tension and compression is computed by means of a semiempirical approach in combination with nonequilibrium Green’s function. Our findings clearly demonstrate that the thermoelectric performance can be effectively tuned by the optimum choice of the nature and magnitude of the strain depending on the pore size. For smaller pore sizes, higher tensile strains can be preferred whereas for nanostructures with larger pores, the compression is a suitable option. Further analysis concludes that the tensile deformation fails to attain any improvement in the thermoelectric figure of merit ZT at any choice of temperature, whereas the performance under compressive deformation goes on improving with the increase in the applied temperature. In addition, changing the pore shape to a triangular one is found to significantly enhance the thermoelectric performance.

Type
Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Restrepo, O.D., Mishra, R., Goldberger, J.E., and Wind, W.: Tunable gaps and enhanced mobilities in strain-engineered silicene. J. Appl. Phys. 115, 033711 (2014).CrossRefGoogle Scholar
Kara, A., Enriquez, H., Seitsonen, A.P., Voon, L.C.L.Y., Vizzini, S., Aufray, B., and Oughaddou, H.: A review on silicene-new candidate for electronics. Surf. Sci. Rep. 67, 118 (2012).CrossRefGoogle Scholar
Cahangirov, S., Topsakal, M., Akturk, E., Sahin, H., and Ciraci, S.: Two- and one-dimensional honeycomb structures of silicon and germanium. Phys. Rev. Lett. 102, 236804 (2009).CrossRefGoogle ScholarPubMed
Pei, Q.X., Zhang, Y.W., Sha, Z.D., and Shenoy, V.B.: Tuning the thermal conductivity of silicene with tensile strain and isotopic doping: A molecular dynamics study. J. Appl. Phys. 114, 033526 (2013).CrossRefGoogle Scholar
Shuai, Z. and Wang, Z.: Band-gap modulations of armchair silicene nanoribbons by transverse electric fields. Eur. Phys. J. B 86, 488 (2013).Google Scholar
De Padova, P., Perfetti, P., Olivieri, B., Quaresima, C., Ottaviani, C., and Le Lay, G.: 1D graphene-like silicon systems: Silicene nano-ribbons. J. Phys.: Condens. Matter 24, 223001 (2012).Google ScholarPubMed
Tchalal, M.R., Enriquez, H., Mayne, A.J., Kara, A., Roth, S., Silly, M.G., Bendounan, A., Sirotti, F., Greber, T., Aufray, B., Dujardin, G., Ali, M.A., and Oughaddou, H.: Formation of one-dimensional self assembled silicon nanoribbons on Au(110)–(2 × 1). Appl. Phys. Lett. 102, 083107083115 (2013).CrossRefGoogle Scholar
Tchalala, M.R., Enriquez, H., Mayne, A.J., Kara, A., Dujardin, G., Ali, M.A., and Oughaddou, H.: Atomic structure of silicene nanoribbons on Ag(110). J. Phys.: Conf. Ser. 491, 012002 (2014).Google Scholar
Meng, L., Wang, Y., Zhang, L., Du, S., Wu, R., Li, L., Zhang, Y., Li, G., Zhou, H., Hofer, W.A., and Gao, H.J.: Buckled silicene formation on Ir(111). Nano Lett. 13, 685690 (2013).CrossRefGoogle Scholar
Fleurence, A., Friedlein, R., Ozaki, T., Kawai, H., Wang, Y., and Takamura, Y.Y.: Experimental evidence for epitaxial silicene on diboride thin films. Phys. Rev. Lett. 108, 245501245505 (2012).CrossRefGoogle ScholarPubMed
Hu, M., Zhang, X., and Poulikakos, D.: Anomalous thermal response of silicene to uniaxial stretching. Phys. Rev. B 87, 195417 (2013).CrossRefGoogle Scholar
Kaur, S., Narang, S.B., and Randhawa, D.K.: Influence of the pore shape and dimension on the enhancement of thermoelectric performance of graphene nanoribbons. J. Mater. Res. 32, 11491159 (2017).CrossRefGoogle Scholar
Yeo, P.S.E., Loh, K.P., and Gan, C.K.: Strain dependence of the heat transport properties of graphene nanoribbons. Nanotechnology 23, 495702 (2012).Google ScholarPubMed
Wei, N., Xu, L., Wang, H.Q., and Zheng, J.C.: Strain engineering of thermal conductivity in graphene sheets and nanoribbons: A demonstration of magic flexibility. Nanotechnology 22, 105705 (2011).CrossRefGoogle ScholarPubMed
Yeo, P.S.E., Sullivan, B.M., Loh, K.P., and Gan, C.K.: First-principles study of the thermoelectric properties of strained graphene nanoribbons. J. Mater. Chem. A 1, 10762 (2013).CrossRefGoogle Scholar
Zhai, X. and Jin, G.: Stretching-enhanced ballistic thermal conductance in graphene nanoribbons. Europhys. Lett. 96, 16002 (2011).CrossRefGoogle Scholar
Kaur, S., Narang, S.B., and Randhawa, D.K.: Tunable thermoelectric performance in porous armchair graphene nanoribbons as a function of strain, pore morphology and temperature. J. Electron. Mater. 47, 64676475 (2018).CrossRefGoogle Scholar
Xie, H., Ouyang, T., Germaneau, E., Qin, G., Hu, M., and Bao, H.: Large tunability of lattice thermal conductivity of monolayer silicene via mechanical strain. Phys. Rev. B 93, 075404 (2016).CrossRefGoogle Scholar
An, R.L., Wang, X., Vasilopoulos, P., Liu, Y.S., Chen, A.B., Dong, Y.J., and Zhai, M-X.: Vacancy effects on electric and thermoelectric properties of zigzag silicene nanoribbons. J. Phys. Chem. C 118, 2133921346 (2014).CrossRefGoogle Scholar
Ma, T., Wen, S., Wu, C., Yan, L., Zhang, M., Kan, Y., and Su, Z.: Theoretical investigation of armchair silicene nanoribbons with application in stretchable electronics. J. Mater. Chem.C 3, 10085 (2015).CrossRefGoogle Scholar
Hossain, M.S., Al-Dirini, F., Hossain, F.M., and Skafidas, E.: High performance graphene nano-ribbon thermoelectric devices by incorporation and dimensional tuning of nanopores. Sci. Rep. 5, 11297 (2015).CrossRefGoogle ScholarPubMed
Romano, G. and Grossman, J.C.: Toward phonon-boundary engineering in nanoporous materials. Appl. Phys. Lett. 105, 033116 (2014).CrossRefGoogle Scholar
Gong, B., Cui, S., Zhao, Y., Sun, Y., and Ding, Q.: Strain-controlled fatigue behaviors of porous PLA-based scaffolds by 3D-printing technology. J. Biomater. Sci., Polym. Ed. 28, 2196 (2017).CrossRefGoogle ScholarPubMed
Stokbro, K., Peterson, D.E., Smidstrup, S., Blom, A., Ipsen, M., and Kaasbjerg, K.: Semiempirical model for nanoscale device simulations. Phys. Rev. B 82, 075420 (2010).CrossRefGoogle Scholar
Martins, A.S. and Valves, M.: Group-IV nanosheets with vacancies: A tight-binding extended Hückel study. J. Phys.: Condens. Matter 26, 365501 (2014).Google Scholar
Landauer, R.: Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM J. Res. Dev. 1, 223231 (1957).CrossRefGoogle Scholar